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Abstract. The paper focuses on constructing and investigation of cost-effective difference schemes for the numerical solution of
the two-dimensional three-phase non-isothermal flow problem without capillary and gravitational forces. In this paper, the finite
difference method is used to solve the problem numerically. The method of energy inequalities is applied to examine the stability of
the finite difference scheme with respect to the initial data and the right-hand sides of the equations. Three cost-effective difference
schemes are constructed on the base of the studied scheme. The efficiency of the proposed algorithms is analyzed on the basis of
comparing the average time spent on the numerical implementation of one time layer.

INTRODUCTION

The urgency of a rigorous theoretical justification of numerical methods for solving the problems of the three-phase
non-isothermal flow theory is due to its practical importance in the oil industry when predicting the extraction of high-
viscosity paraffin or resinous oil. This is due to the fact that currently the reserves of this category of oil are higher
than the reserves of so-called light oils, which leads to the need to apply secondary or tertiary methods. However, due
to the rather high cost of these methods, studies aimed at increasing its effectiveness are of great practical importance.
At present, it is possible to reach this only using methods of mathematical modeling of hydrodynamic processes
occurring in oil reservoirs during the development of deposits.

The model considered in the present paper consists of the mass conservation equation, equation of motion in the
form of the linear Darcy’s law, energy equation, equation of state, and phase balance equation. The model with various
assumptions about physical data was studied, for example, in [1, 2, 3]. In [4], a new “global” formulation of the three-
phase non-isothermal flow problem was proposed, which is based on the introduction of a change of variables for the
pressure, called “global” pressure, to eliminate the gradients of capillary pressures from the equations for pressure
and temperature. As a result, the initial equations were reduced to a system of five partial differential equations with
respect to pressure, temperature, velocity, and two saturations.

The main difficulty in the numerical solution of the obtained problem is connected with the complexity and
strong non-linearity of the equations. Therefore, the issue of the development of computational algorithms for the
numerical implementation of this problem, which requires less computational operations, becomes relevant. In the
present work, the main attention is paid to the construction and investigation of cost-effective difference schemes
for the three-phase non-isothermal flow problem. Under the cost-effective schemes we mean schemes for which the
number of arithmetic operations for the transition from the n-th time layer to the (n + 1)-th one is proportional to the
number of unknown values. In order to simplify the calculations when obtaining a priori estimates, the coefficients
in the equations are linearized, or taken to be constant. A priori estimates are obtained using the method of energy
inequalities which prove the stability of the constructed difference scheme. The proof of the stability is based on five
preliminary lemmas. In the last section of the paper three efficient difference schemes are constructed on the base of
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the constructed scheme. The efficiency of the proposed algorithms is analyzed on the basis of comparing the average
time spent on the numerical implementation of one time layer.

FORMULATION OF THE PROBLEM

Consider the following three-phase non-isothermal flow problem in a domain Q ≡ Ω× [0, t1] where Ω = [0, l]× [0, l]
[4]:

∂T
∂t
+ �u · ∇T − kh∇2T = fT , (1)

∂p
∂t
− ∇ ·

(
kp (x, t, p)∇p

)
− βT

∂T
∂t
= fp, (2)

∂sα
∂t
− να∇2 p = fα, α = w, o, (3)

�u = −kλ∇p (4)

with the following initial and boundary conditions:

T (x, 0) = T0, p (x, 0) = p0, sα (x, 0) = sα0, (5)

kh
∂T
∂�n

∣∣∣∣∣
∂Ω
= 0, kp

∂p
∂�n

∣∣∣∣∣
∂Ω
= 0, (6)

where subscripts w, o, g, r denote the phases of water, oil, steam, and rock; k is the absolute permeability, p is
pressure, T is temperature, and sα is the saturation of the phase α; �u is velocity; βT is some function, and να is a
constant.

Suppose that the functions kp, kh, λ are continuous in Q and the following conditions hold:

kp (x, t, p) ≥ c0 > 0, kh (x, t) ≥ 4c0, λ (x, t) ≤ c1. (7)

We note that in the multiphase flow theory the functions fT and fp usually have the form

fp =

Wn∑
j=1

ϕ∗p (x, t)
(
pin j − p

)
δ
(
x − x(w)

j

)
, fT =

Wn∑
j=1

ϕ∗T (x, t)
(
Tin j − T

)
δ
(
x − x(w)

j

)
, (8)

where x(w)
1

, x(w)
2

, ..., x(w)
Wn
∈ Ω are source coordinates; ϕ∗p (x, t), ϕ∗T (x, t) are some known functions; pin j is the injection

pressure; Tin j is the temperature corresponding to the pressure pin j according to the table of thermophysical properties

of water and steam; δ (x) is a delta function. We assume that
∣∣∣ϕ∗p (x, t)

∣∣∣ , ∣∣∣ϕ∗T (x, t)
∣∣∣ ≤ c1.

FORMULATION OF THE DIFFERENCE PROBLEM

Let us introduce the uniform grid Ωhτ in Q with spatial steps h1, h2 and time step τ as follows:

Ωhτ = Ωh ×Ωτ =
{
(x, t) : x ∈ Ωh, t ∈ Ωτ

}
, Ωh = Ωh,1 ×Ωh,2,

Ωh,m = {imhm : im = 0, 1, ..., Nm, Nmhm = l} , Ωτ = {tn = nτ : n = 0, 1, ..., Nt, Ntτ = t1} .
We also introduce the notations

Ωh,m = {imhm, im = 1, ..., Nm − 1, Nmhm = l} ,
Ω+h,m = {imhm, im = 1, ..., Nm, Nmhm = l} , Ω−h,m = {imhm, im = 0, ..., Nm − 1, (Nm − 1) hm = l − hm} .

Γh = Ωh\Ωh, Ωh =

2⋃
m=1

Ωh,m, Γh =

2⋃
m=1

Γ±h,m, Γh,0 = Γh\Γh,
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Γ+h,m = {xm = Nm, 0 < x3−m < N3−m} , Γ−h,m = {xm = 0, 0 < x3−m < N3−m} .
Let us associate the following finite difference scheme with the differential problem (1)-(6):

BT h
t + L

(
�uh, T h

)
+ Λ1T h = f h

T , (9)

Bph
t + Λ2 ph = βh

T T h
t + f h

p , (10)

Bsh
α,t + Λ3αph = f h

α , α = w, o, (11)

�uh =
(
uh

1, u
h
2

)
, uh

m = −kλh ph
xm
, m = 1, 2, (12)

T h (0) = T0, ph (0) = p0, sh
α (0) = sα0, (13)

where
B = E + τωA, A = A1 + A2, ω > 0,

Amw =
{
−2h−1

m
(
wxm + w

)
, xm = 0; −wx̄m xm , xm ∈ Ωh,m; 2h−1

m
(
wx̄m + w

)
, xm = l

}
, (14)

L
(
�v, θ
)
= 0.5

2∑
m=1

(
β+m (x) v+1m

m θxm + β
−
m (x) vmθxm

)
,

β+m (x) =
{
2, xm = 0; 1, xm ∈ Ωh,m; 0, xm = l

}
, β−m (x) = 2 − β+m (x)

and the operators Λi are defined as follows:

Λδ =

2∑
m=1

Λδ,m, Λ2w =
2∑

m=1

(
χ+m (x)Λ+2,mw + χ−m (x)Λ−2,mw

)
,

Λδ,mw =
{
−2h−1

m ηwxm , xm = 0; −ηwx̄m xm , xm ∈ Ωh,m; 2h−1
m ηwx̄m , xm = l

}
,

Λ+2,mw =
{
−2h−1

m μwxm , xm = 0; − (μwxm

)
x̄m
, xm ∈ Ωh,m; 2h−1

m
(
μwxm

)−1m , xm = l
}
,

Λ−2,mw =
{
−2h−1

m
(
μwx̄m

)+1m , xm = 0; − (μwx̄m

)
xm
, xm ∈ Ωh,m; 2h−1

m μwx̄m , xm = l
}
,

χ+m (x) =
{
1, x3−m = 0; 0.5, x3−m ∈ Ωh,3−m; 0, x3−m = l

}
, χ−m (x) = 1 − χ+m (x) ,

where η = kh
h for δ = 1; η = να for δ = 3α. The notations used above are defined in [5]. In the present paper we use

the following scalar products and norms:

(w, w̃) = (w, w̃)
Ωh
=
∑
x∈Ωh

bh (x) w (x) w̃ (x) h1h2, (w, w̃)Ωh
=
∑
x∈Ωh

w (x) w̃ (x) h1h2, (w, w̃)Ω±h,m =
∑

x∈Ω±h,m
w (x) w̃ (x) h1h2,

‖w‖20 = (w, w)Ω̄h
, bh (x) =

{
1, x ∈ Ωh; 0.5, x ∈ Γh; 0.25, x ∈ Γh,0

}
, ‖w‖21 =

1

2

2∑
m=1

((
w2

x̄m
, 1
)
Ω+h,m
+
(
w2

xm
, 1
)
Ω−h,m

)
.

STUDY OF THE STABILITY OF THE DIFFERENCE SCHEME

Let us consider the problem for θ = T h − T̃ h, π = ph − p̃h, σα = sh
α − s̃h

α, ζm = um − ũm to study the stability of the
difference scheme (9)-(13):

Bθt + L
(
�uh, T h

)
− L
(
�̃u

h
, T̃ h
)
+ Λ1θ = ψT , (15)

Bπt + Λ2 ph − Λ2 p̃h = βh
T θt + ψp, (16)

Bσα,t + Λ3απ = ψα, α = w, o, (17)

ζm = −kλhπxm , m = 1, 2, (18)
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θ (0) = θ0, π (0) = π0, σα (0) = σ0
α, α = w, o, (19)

where T̃ h, p̃h, s̃h
α, ũm is the solution of the perturbed problem. Suppose that the following conditions hold for initial

values of temperature and pressure:

c1η − q0t1 −
∥∥∥T 0
∥∥∥2

B − c5

∥∥∥p0
∥∥∥2

B ≥ 0, c1η − q0t1 −
∥∥∥T̃ 0
∥∥∥2

B − c5

∥∥∥p̃0
∥∥∥2

B ≥ 0, (20)

where η > 0 is a real parameter, c5 and q0 are some constants. In addition, to obtain an a priori estimate of the
difference solution, we make the assumption that for the dimensionless function βT = βT (x, t) and the dimensionless
constant k, the following inequalities hold:

βT ≤ c2τ, c2 > 0, (21)

k ≤ c3τ, c3 > 0. (22)

Let us first formulate the main result of this chapter.

Theorem 1 Let the conditions (7), (20), (21), (22) and ω > ω0, ω0 = max
i=1,4

ωi + ε, ε > 0 hold. Then the difference

scheme (9)-(13) is stable with respect to the initial values and right-hand sides of the equations, and the following
inequality holds: ∥∥∥θ̂∥∥∥2B + ‖π̂‖2B +

∑
α=w,o

‖σ̂α‖2B + 4c0τ ‖θ‖21 + d9τ ‖π‖21 ≤

≤ d7 + d8 (τ) ‖θ‖2B + d1 (τ) ‖π‖2B +
∑
α=w,o

d9 ‖σα‖2B + d10τ

⎛⎜⎜⎜⎜⎜⎜⎝‖ψT ‖2A−1 +
∥∥∥ψp

∥∥∥2
A−1 +

∑
α=w,o

‖ψα‖2A−1

⎞⎟⎟⎟⎟⎟⎟⎠ . (23)

Before proving the theorem, we give the following auxiliary lemmas. Let us state without proof the following lemma,
which is based on the results obtained in [6].

Lemma 2 Let the conditions (7) hold. Then the following inequalities hold:

(Λ1w, w) ≥ 4c0 ‖w‖21 , (Λ2w − Λ2w̃, w − w̃) ≥ c0 ‖w − w̃‖21 ,

τ |(Λ2w − Λ2w̃, z)| ≤ c1

(
ε ‖w − w̃‖21 +

τ2

ε
‖z‖2A +

τ

εδω
‖z‖2B
)
,

2τ (Λ1w, w̃) ≤ c1

(
ε ‖w‖21 +

τ2

ε
‖w̃‖2A +

τ

εδω
‖w̃‖2B
)
, ε > 0.

Lemma 3 Let the conditions (7), (21) and ω > ω1, where ω1 =
8c2

1

c0
+ c2

εδ
+ 2c1

c0δ
, ε > 0 hold. Then the following

inequality holds:

‖π̂‖2B + τ3 (ω − ω1) ‖πt‖2A + c0τ ‖π‖21 ≤ d1 (τ) ‖π‖2B +
2c2ετ

3

δ
‖θt‖2A +

c0τ

c1

∥∥∥ψp

∥∥∥2
A−1 . (24)

Proof. Multiply the equation (16) scalarly by 2τπ̂:

‖π̂‖2B − ‖π‖2B + τ2 ‖πt‖2B + 2τ
(
Λ2 ph − Λ2 p̃h, π̂

)
= 2τ

(
βh

Tθt, π̂
)
+ 2τ
(
ψp, π̂

)
. (25)

Using Lemma 2, we obtain:

2τ
(
Λ2 ph − Λ2 p̃h, π̂

)
≥ 2τ

(
c0 − c1

ε1

)
‖π‖21 − 2c1ε1τ

3 ‖πt‖2A −
2c1ε1τ

2

ωδ
‖πt‖2B . (26)

Using the condition (21) and Cauchy inequality, the rest of the terms in (24) can be estimated as follows:

2τ
(
βh

T θt, π̂
)
≤ 2c2ε2τ

3

δ
‖θt‖2A +

c2τ

ε2

‖π‖2B +
c2τ

2

ε2ωδ
‖πt‖2B ,
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2τ
(
ψp, π̂

)
= 2τ

(
ψp, π

)
+ 2τ2

(
ψp, πt

)
≤ ε1τ ‖π‖2B +

ε1τ
3

δ
‖πt‖2A +

2τ

ε1

∥∥∥ψp

∥∥∥2
A−1 . (27)

Taking into account the obtained inequalities, we find from (25) that

‖π̂‖2B + τ2

(
1 − 2c1ε1

ωδ
− c2

ε2ωδ

)
‖πt‖2B − τ3

(
2c1ε1 +

ε1

δ

)
‖πt‖2A + 2τ

(
c0 − c1

ε1

)
‖π‖21 ≤

≤
(
1 + ε1τ +

c2τ

ε2

)
‖π‖2B +

2c2ε2τ
3

δ
‖θt‖2A +

2τ

ε1

∥∥∥ψp

∥∥∥2
A−1 . (28)

Choosing ε1 =
2c1

c0
, and ω from the condition ω > ω1, we come to the assertion of the lemma.

Lemma 4 Let the conditions (22), (20) and ω > ω2, ω2 =
c2

1
(η+2)

8c0

(
1 + 1

δ

)
+

3c0η
2δ(η+2)

+
4c2c5(η+2)

3δc0η
hold. Then the

following inequalities hold:

∥∥∥ p̂h
∥∥∥2

B + τ
3 (ω − ω2)

∥∥∥ph
t

∥∥∥2
A + 2τd2 (ε1)

∥∥∥ph
∥∥∥2

1
≤ ∥∥∥ph

∥∥∥2
B +

2c2ε2τ
3

δ

∥∥∥T h
t

∥∥∥2
A +

6τ

c0

∥∥∥ fp

∥∥∥2
A−1 , (29)

∥∥∥∥ ˆ̃ph
∥∥∥∥2

B
+ τ3 (ω − ω2)

∥∥∥p̃h
t

∥∥∥2
A + 2τd2 (ε1)

∥∥∥p̃h
∥∥∥2

1
≤ ∥∥∥p̃h

∥∥∥2
B +

2c2ε2τ
3

δ

∥∥∥T̃ h
t

∥∥∥2
A +

6τ

c0

∥∥∥ f̃p

∥∥∥2
A−1 , (30)

∥∥∥T h,n
∥∥∥2

B +
∥∥∥ph,n
∥∥∥2

B + d4τ
∥∥∥ph,n
∥∥∥2

1
≤ c1η, (31)

∥∥∥T̃ h,n
∥∥∥2

B +
∥∥∥p̃h,n
∥∥∥2

B + d4τ
∥∥∥p̃h,n
∥∥∥2

1
≤ c1η, (32)

2τ
(
L
(
uh,T h

)
− L
(
ũh, T̃ h

)
, θ̂
)
≤ 4c2

1c3εη

d4

+
4c1ητ

2

ε
‖θ‖2B +

4c1ητ
3

εδ
‖θt‖2A , ε > 0. (33)

Proof. Multiplying the equation (10) scalarly by 2τ p̂h, and carrying out calculations analogous to those made in
Lemma 3, we obtain the inequality (29) . Now multiply scalarly the equation (9) by 2τT̂ h:

∥∥∥T̂ h
∥∥∥2

B −
∥∥∥T h
∥∥∥2

B + τ
2
∥∥∥T h

t

∥∥∥2
B + 2τ

(
L
(
�uh, T h

)
, T̂ h
)
+ 2τ
(
Λ1T h, T̂ h

)
= 2τ

(
f h
T , T̂

h
)
. (34)

Let us estimate the scalar products in (34). We obtain a chain of inequalities by applying the Cauchy inequality

to the term ζ1 ≡ 2τ
(
L
(
�uh, T h

)
, T̂ h
)
:

ζ1 ≤ 2τ

2∑
m=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑
Ω−h,m

∑
Ω̄h,3−m

(
uh,+1m

m

)2
h1h2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
2
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑
Ω−h,m

∑
Ω̄h,3−m

(
T h

xm
T̂ h
)2

h1h2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
2

+

+2τ

2∑
m=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑
Ω+h,m

∑
Ω̄h,3−m

(
uh

m

)2
h1h2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
2
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑
Ω+h,m

∑
Ω̄h,3−m

(
T h

x̄m
T̂ h
)2

h1h2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
2

≤

≤ 2τ

2∑
m=1

∥∥∥uh
m

∥∥∥
0

∥∥∥T̂ h
∥∥∥

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑
Ω−h,m

∑
Ω̄h,3−m

(
T h

xm

)2
h1h2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
2

+ 2τ

2∑
m=1

∥∥∥uh
m

∥∥∥
0

∥∥∥T̂ h
∥∥∥

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑
Ω+h,m

∑
Ω̄h,3−m

(
T h

x̄m

)2
h1h2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
2

≤

= 4ε0

2∑
m=1

∥∥∥uh
m

∥∥∥2
0
+
τ2

ε0

∥∥∥T̂ h
∥∥∥2

0

∥∥∥T h
∥∥∥2

1
.

Using the equations (12), condition (22), and choosing ε0 = 4ε1ω
−1, we obtain

ζ1 ≤ 4c1c3ε0τ
∥∥∥ph
∥∥∥2

1
+

2τ2

ε0

∥∥∥T̂ h
∥∥∥2

1

∥∥∥T h
∥∥∥2

A −
τ2

ε0

∥∥∥T̂ h
∥∥∥2

1

∥∥∥T h
∥∥∥2

0
.
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Using a technique similar to that used in Lemma 3, we arrive at the following inequality from (34):

∥∥∥T̂ h
∥∥∥2

B + τ
2

(
1 − c1ε1

ωδ
− 1

ωδε2

) ∥∥∥T h
t

∥∥∥2
B − c1ε1τ

3
∥∥∥T h

t

∥∥∥2
A + τ

(
4c0 − c1

ε1

− 1

2ε1

∥∥∥T h
∥∥∥2

B

) ∥∥∥T̂∥∥∥2
1
+

+τ

(
4c0 − c1

ε1

− 2

ε2

) ∥∥∥T h
∥∥∥2

1
≤ ∥∥∥T h

∥∥∥2
B +

4c1c3ε1τ

ω

∥∥∥ph
∥∥∥2

1
+ 2τε2

∥∥∥ f h
T

∥∥∥2
A−1 .

Add the last inequality to the inequality (29) multiplied by some c5 > 0:

∥∥∥T̂ h
∥∥∥2

B + c5

∥∥∥p̂h
∥∥∥2

B + τ
3

(
ω − c1ε1

δ
− 1

δε2

− c1ε1 − 2c2ε2c5

δ

) ∥∥∥T h
t

∥∥∥2
A + c5τ

3 (ω − ω2)
∥∥∥ph

t

∥∥∥2
A +

+τ

(
4c0 − c1

ε1

− 1

2ε1

∥∥∥T h
∥∥∥2

B

) ∥∥∥T̂∥∥∥2
1
+ τ

(
4c0 − c1

ε1

− 2

ε2

) ∥∥∥T h
∥∥∥2

1
+ τ

(
2c5d2 (ε3) − 16c1c3ε1

ω

) ∥∥∥ph
∥∥∥2

1
≤

≤ ∥∥∥T h
∥∥∥2

B + c5

∥∥∥ph
∥∥∥2

B + 2τε2

∥∥∥ f h
T

∥∥∥2
A−1 +

6τc5

c0

∥∥∥ f h
p

∥∥∥2
A−1 .

Using the relations (8), it is not difficult to show that

d5

∥∥∥ f h
T

∥∥∥2
A−1 + d6

∥∥∥ f h
p

∥∥∥2
A−1 ≤ c4

Wn∑
j=1

∑
x∈Ω̄h

bh (x)
(
p2

in j + T 2
in j

)
δh

(
x − x(w)

j

)
h1h2 = q0.

Let us choose ε1 =
c1(η+2)

8c0
, ε2 =

2(η+2)

3c0η
and the constants c5 and ε3 from the condition of non-negativity of the

coefficient of
∥∥∥ph
∥∥∥2

1
. Then, under the conditions of the lemma, we arrive at the inequality

∥∥∥T̂ h
∥∥∥2

B + c5

∥∥∥p̂h
∥∥∥2

B + d3τ
(
c1η −

∥∥∥T h
∥∥∥2

B

) ∥∥∥T̂ h
∥∥∥2

1
+ d4τ

∥∥∥ph
∥∥∥2

1
≤ ∥∥∥T h

∥∥∥2
B + c5

∥∥∥ph
∥∥∥2

B + τq0. (35)

To prove the lemma, we apply the method of mathematical induction. The inequality (35) for n′ = 0 yields

∥∥∥T h,1
∥∥∥2

B + c5

∥∥∥ph,1
∥∥∥2

B + d3τ
(
c1η −

∥∥∥T h,0
∥∥∥2

B

) ∥∥∥T h,1
∥∥∥2

1
+ d4τ

∥∥∥ph,0
∥∥∥2

1
≤ ∥∥∥T h,0

∥∥∥2
B + c5

∥∥∥ph,0
∥∥∥2

B + τq0. (36)

Since the inequality c1η −
∥∥∥T h,0

∥∥∥2
B > 0 holds under the condition (20), then it follows from (20) and (36) that

∥∥∥T h,1
∥∥∥2

B + c5

∥∥∥ph,1
∥∥∥2

B + d4τ
∥∥∥ph,0
∥∥∥2

1
≤ ∥∥∥T h,0

∥∥∥2
B + c5

∥∥∥ph,0
∥∥∥2

B + τq0 ≤ c1η. (37)

Assuming that the inequality (31) holds for n′ = n − 2:

∥∥∥T h,n−1
∥∥∥2

B +
∥∥∥ph,n−1

∥∥∥2
B + d4τ

∥∥∥ph,n−2
∥∥∥2

1
≤ c1η, (38)

write the ineqality (35) for n′ = n − 1:

∥∥∥T h,n
∥∥∥2

B + c5

∥∥∥ph,n
∥∥∥2

B + d3τ
(
c1η −

∥∥∥T h,n−1
∥∥∥2

B

) ∥∥∥T h,n
∥∥∥2

1
+ d4τ

∥∥∥ph,n−1
∥∥∥2

1
≤ ∥∥∥T h,n−1

∥∥∥2
B + c5

∥∥∥ph,n−1
∥∥∥2

B + τq0. (39)

By virtue of the fulfillment of the inequality (38), the expression in brackets before
∥∥∥T h,n

∥∥∥2
1

in the left-hand side
of (39) is non-negative. Therefore it follows from (39) that

∥∥∥T h,n
∥∥∥2

B + c5

∥∥∥ph,n
∥∥∥2

B + d3τ
(
c1η −

∥∥∥T h,n−1
∥∥∥2

B

) ∥∥∥T h,n
∥∥∥2

1
+ d4τ

∥∥∥ph,n−1
∥∥∥2

1
≤

≤ ∥∥∥T h,n−1
∥∥∥2

B + c5

∥∥∥ph,n−1
∥∥∥2

B + τq0 ≤
∥∥∥T h,n−2

∥∥∥2
B + c5

∥∥∥ph,n−2
∥∥∥2

B + 2τq0 ≤ ... ≤
∥∥∥T h,0

∥∥∥2
B + c5

∥∥∥ph,0
∥∥∥2

B + nτq0 ≤ c1η

since nτ ≤ t1 holds for 0 ≤ n ≤ Nt. Similarly, the inequality (32) is proved.
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Using the definition of L and using the Cauchy inequality, it is easy to see that

ζ = 2τ
(
L
(
uh,T h

)
− L
(
ũh, T̃ h

)
, θ̂
)
≤ 2ε1

2∑
m=1

(
‖um‖20 + ‖ũm‖20

)
+

2τ2

ε1

∥∥∥θ̂∥∥∥2
0

(∥∥∥T h
∥∥∥2

1
+
∥∥∥T̃ h
∥∥∥2

1

)
.

Using the equations (12) and the condition (22) yields

ζ ≤ 2c1c3ε1τ
(
‖p‖21 + ‖p̃‖21

)
+

2τ2

ε1

(
‖θ‖2 + τ ‖θt‖2

) (∥∥∥T h
∥∥∥2

1
+
∥∥∥T̃ h
∥∥∥2

1

)
.

Finally, using the inequalities (31) and (32) to estimate the right-hand side of the last inequality, we obtain:

ζ ≤ 2c1c3ε1

d4

· 2c1η +
2τ2

ε1

(
‖θ‖2 + τ ‖θt‖2

)
· 2c1η,

from which the inequality (33) follows.

Lemma 5 Let the conditions (7), (20) and ω > ω3, ω3 =
c2

1

4c0

(
1 + 1

δ

)
+ c1

2c0
+

c2
1
η

2c0δ
hold. Then the following inequality

holds: ∥∥∥θ̂∥∥∥2B + τ3 (ω − ω3) ‖θt‖2A + 4c0τ ‖θ‖21 ≤ d7 + d8 (τ) ‖θ‖2B +
8c0τ

c1

‖ψT ‖2A−1 . (40)

Proof. Multiply the equation (15) scalarly by 2τθ̂:

∥∥∥θ̂∥∥∥2B − ‖θ‖2B + τ2 ‖θt‖2B + 2τ
(
L
(
�uh, T h

)
− L
(
�̃u

h
, T̃ h
)
, θ̂
)
+ 2τ
(
Λ1θ, θ̂

)
= 2τ

(
ψT , θ̂

)
. (41)

Estimate the scalar products in (41). Using the technique used above, we obtain

2τ
(
Λ1θ, θ̂

)
= 2τ (Λ1θ, θ) + 2τ2 (Λ1θ, θt) ≥ 8τc0 ‖θ‖21 − c1τ

(
ε1 ‖θ‖21 +

τ2

ε1

‖θt‖2A +
τ

ε1δω
‖θt‖2B
)
, (42)

2τ
(
ψT , θ̂

)
≤ τ

ε1

‖θ‖2B +
τ3

ε1

‖θt‖2A + 2τε1 ‖ψT ‖2A−1 . (43)

Using the inequalities (42), (43) and (33), we obtain from (41) that

∥∥∥θ̂∥∥∥2B + τ3

(
ω − c1

ε1δ
− 2

ε1

− 2c1η

ε1δ
− c1

ε1

)
‖θt‖2A + τ (8c0 − c1ε1) ‖θ‖21 ≤

2c2
1c3ε1η

d4

+

(
1 +

2c1ητ
2

ε1

)
‖θ‖2B + 2τε1 ‖ψT ‖2A−1 .

Choosing ε1 =
4c0

c1
, we obtain the assertion of the lemma.

The following lemma is proved similarly:

Lemma 6 Let the condition ω > ω4, ω4 =
2να
εδ
− να

ε
hold. The the following inequality holds:

‖σ̂α‖2B + τ3 (ω − ω4)
∥∥∥σα,t∥∥∥2A ≤ d9 ‖σα‖2B + 2τναε ‖π‖21 +

2τ

ε
‖ψα‖2A−1 , ε > 0.

Now let us prove Theorem 1. Combining the results of Lemma 3, 5 and 6, we arrive at the following inequality after
obvious transformations:

∥∥∥θ̂∥∥∥2B + ‖π̂‖2B +
∑
α=w,o

‖σ̂α‖2B + τ3

(
ω − ω4 − 2c2ε6

δ

)
‖θt‖2A + τ3 (ω − ω1) ‖πt‖2A +

+
∑
α=w,o

τ3 (ω − ω5)
∥∥∥σα,t∥∥∥2A + 4c0τ ‖θ‖21 + τ

⎛⎜⎜⎜⎜⎜⎜⎝c0 −
∑
α=w,o

4ναε7

⎞⎟⎟⎟⎟⎟⎟⎠ ‖π‖21 ≤ d7 + d8 (τ) ‖θ‖2B +

+d1 (τ) ‖π‖2B +
∑
α=w,o

d9 ‖σα‖2B +
8c0τ

c1

‖ψT ‖2A−1 +
c0τ

c1

∥∥∥ψp

∥∥∥2
A−1 +

∑
α=w,o

2τ

ε7

‖ψα‖2A−1 .

Assuming that the conditions of the Theorem 1 are satisfied, and choosing ε7 from the condition ε7 <
c0

4να
, we

arrive at the assertion of the Theorem 1.
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CONSTRUCTION OF COST-EFFECTIVE DIFFERENCE SCHEMES

Consider the following difference scheme

B̃T h
t + L

(
�uh, T h

)
+ Λ1T h = f h

T , (44)

B̃ph
t + Λ2 ph = βh

T T h
t + f h

p , (45)

B̃sh
α,t + Λ3αph = f h

α , α = w, o, (46)

uh
m = −kλh ph

xm
, m = 1, 2, (47)

T h (0) = T0, ph (0) = p0, sh
α (0) = sα0 (48)

with some self-adjoint operator B̃ satisfying the condition B̃ ≥ B. It is known from the theory of two-layer difference
schemes that if the difference scheme (9)-(13) is stable with respect to the initial data and the right-hand sides of the
equations, then the scheme (44)-(48) also has the same property. Using this statement, we construct three cost-effective
difference schemes for the problem (1)-(6) by choosing the operator B̃.

Factorization scheme

Let us take B̃ = (E + τωA1) (E + τωA2), where the operators Am are defined as Am = A+m + A−m [7],

A+mw =
{
h−1

m w + h−2
m w, xm = 0; h−1

m wx̄m , xm ∈ Ωh,m; h−2
m w + h−1

m w − 2h−2
m w−1m , xm = 1

}
,

A−mw =
{
h−2

m w + h−1
m w − 2h−2

m w+1m , xm = 0; −h−1
m wxm , xm ∈ Ωh,m; h−1

m w + h−2
m w, xm = 1

}
.

It can be seen by direct verification that
(
A+mw, w̃

)
=
(
A−mw̃, w

)
, i. e. the operators A+m, A−m are mutually conjugate.

In this case the operator A decomposes into the sum of two operators A = A+ + A−, where A± = A±1 + A±2 . With this

choice of the operator B̃, the factorization scheme is written as follows:

(
E + τωA+

) (
E + τωA−

)
T h,n

t + L
(
�uh,n,T h,n

)
+ Λ1T h,n = f h,n

T , (49)

(
E + τωA+

) (
E + τωA−

)
ph,n

t + Λ2 ph,n = βh
T T h,n

t + f h,n
p , (50)(

E + τωA+
) (

E + τωA−
)

sh,n
α,t + Λ3αph,n = f h,n

α , (51)

uh
m = −kλh ph,n

xm
, m = 1, 2, (52)

T h,0 = T0, ph,0 = p0, sh,0
α = sα0. (53)

It is easy to verify [7] that the operator B̃ = (E + τωA+) (E + τωA−) is self-adjoint and the operator inequality
B̃ ≥ B holds. Thus, the difference scheme (49)-(53) is stable with respect to the initial data and the right-hand sides of
the equations under the condition ω ≥ ω0. Construct the following algorithm to implement the scheme (49)-(53):

(
E + τωA+

)
θn+ 1

2 + L
(
�uh,n, T h,n

)
+ Λ1T h,n = f h,n+ 1

2

T , (54)

(
E + τωA−

)
θn+1 = θn+ 1

2 , T h,n+1 = T h,n + τθn+1, (55)

(
E + τωA+

)
πn+ 1

2 + Λ2 ph,n = βh
T T h,h

t + f h,n+ 1
2

p , (56)

(
E + τωA−

)
πn+1 = πn+ 1

2 , pn+1 = pn + τπn+1, (57)

(
E + τωA+

)
σ

n+ 1
2

α + Λ3αsh,n
α = f h,n+ 1

2
α , (58)

(
E + τωA−

)
σn+1
α = σ

n+ 1
2

α , sh,n+1
α = sh,n

α + τσ
n+1
α , (59)

uh,n+1
m = −kλh ph,n+1

xm
, m = 1, 2, (60)

where θn+ 1
2 , θn+1, πn+ 1

2 , πn+1, σ
n+ 1

2
α , σn+1

α are auxiliary functions. Determination of auxiliary functions and solutions
by algorithm (54)-(54) is carried out by explicit formulas, therefore the difference scheme (49)-(53) is cost-effective.
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Alternating directions scheme

Choosing the operator B̃ in the form B̃ = (E + τωA1) (E + τωA2), we arrive at the scheme

(E + τωA1) (E + τωA2) T h,n
t + L

(
�uh,n, T h,n

)
+ Λ1T h,n = f h,n+ 1

2

T , (61)

(E + τωA1) (E + τωA2) ph,n
t + Λ2 ph,n = f h,n+ 1

2
p , (62)

(E + τωA1) (E + τωA2) sh,n
α,t + Λ3αph,n = f h,n+ 1

2
α , α = w, o, (63)

uh,n
m = −kλh ph,n

xm
, m = 1, 2, (64)

T h,0 = T0, ph,0 = p0, sh,0
α = sα0, (65)

where the operators Am are defined in (14). In this case B̃ = B̃∗ ≥ B, since the operators A1 and A2 are self-adjoint and
commute. Thus, the scheme (61)-(65) is stable with respect to the initial data and the right-hand sides of the equations
under the condition ω ≥ ω0. Construct the following algorithm for the numerical implementation of the scheme:

(E + τωA1) T h,n+ 1
3 + L

(
�uh,n, T h,n

)
+ Λ1T h,n = f h

T , (66)

(E + τωA2) T h,n+ 2
3 = T h,n+ 1

3 , T h,n+1 = T h,n + τT h,n+ 2
3 , (67)

(E + τωA1) ph,n+ 1
3 + Λ2 ph,n = f h

p , (68)

(E + τωA2) ph,n+ 2
3 = ph,n+ 1

3 , ph,n+1 = ph,n + τph,n+ 2
3 , (69)

(E + τωA1) s
h,n+ 1

3
α + Λ3αsh,n

α = f h
α , (70)

(E + τωA2) s
h,n+ 2

3
α = s

h,n+ 1
3

α , sh,n+1
α = sh,n

α + τs
h,n+ 2

3
α , (71)

uh,n+1
m = −kλh ph,n+1

xm
. (72)

Auxiliary functions T h,n+ 1
3 , T h,n+ 2

3 , ph,n+ 1
3 , ph,n+ 2

3 , s
h,n+ 1

3
α , s

h,n+ 2
3

α are defined from the equations (66)-(71) by the
scalar sweep method, and the solution T h,n+1, ph,n+1, sh,n+1

α on the (n + 1)-th layer is determed by explicit formulas.
Therefore, the scheme (61)-(65) is cost-effective.

Stabilizing correction scheme

Introduce the intermediate solutions T h,n+ 1
2 , ph,n+ 1

2 , sh,n+ 1
2

α instead of θn+ 1
2 , πn+ 1

2 , σ
n+ 1

2
α in the difference scheme (49)-

(52) by formulas

θn+ 1
2 =

T h,n+ 1
2 − T h,n

τ
, πn+ 1

2 =
ph,n+ 1

2 − ph,n

τ
, σ

n+ 1
2

α =
sh,n+ 1

2
α − sh,n

α

τ
.

Then the algorithm (54)-(60) is replaced with the following one:

T h,n+ 1
2 − T h,n

τ
+ ωA+

(
T h,n+ 1

2 − T h,n
)
+ L
(
�uh,n,T h,n

)
+ Λ1T h,n = f h,n+ 1

2

T , (73)

T h,n+1 − T h,n

τ
+ ωA−

(
T h,n+1 − T h,n

)
=

T h,n+ 1
2 − T h,n

τ
, (74)

ph,n+ 1
2 − ph,n

τ
+ ωA+

(
ph,n+ 1

2 − ph,n
)
+ Λ2 ph,n = βh

T T h,h
t + f h,n+ 1

2
p , (75)

ph,n+1 − ph,n

τ
+ ωA−

(
ph,n+1 − ph,n

)
=

ph,n+ 1
2 − ph,n

τ
, (76)

sh,n+ 1
2

α − sh,n
α

τ
+ ωA+

(
sh,n+ 1

2
α − sh,n

α

)
+ Λ3αsh,n

α = f h,n+ 1
2

α , (77)
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(
E + τωA−

) sh,n+1
α − sh,n

α

τ
=

sh,n+ 1
2

α − sh,n
α

τ
, (78)

uh,n+1
m = −kλh ph,n+1

xm
, m = 1, 2. (79)

The equations (73)-(78) are solved by the scalar sweep method, and the values uh,n+1
m are determined by explicit

formulas, therefore the algorithm (73)-(79) is cost-effective.

Results of the computational experiments

Let us analyze the effectiveness of the proposed algorithms by comparing the mean time spent on computing one time
layer. Calculations were carried out on a uniform grid. The grid step was varied between 0.02 and 0.002, and the time
step was chosen equal to τ = 0.001. Calculations for each of the three algorithms were performed until t = 1000τ.
The results of the analysis are given in Table 1.

TABLE 1. Mean time (in milliseconds) required to calculate one time layer

Algorithm / Grid step 51x51 101x101 201x201 501x501

Factorization scheme 22 86.4 354.2 2213.8
Alternating directions scheme 24.9 98.3 396 2481.2
Stabilizing correction scheme 26 103.1 407.3 2553.1

It can be seen that the differences in time are minor, however, since calculations by the factorization scheme are
carried out using explicit formulas, this algorithm requires less time to calculate one time layer.

CONCLUSION
Thus, the following results were obtained in the paper. A two-layer finite-difference scheme is constructed for the
model two-dimensional three-phase non-isothermal flow problem without allowance for capillary forces. Using the
method of energy inequalities, an a priori estimate is obtained for the solution of the difference scheme which proves
the stability of the scheme with respect to the initial data and the right-hand sides of the equations. On the basis of the
studied difference scheme, three cost-effective difference schemes are constructed. The efficiency of the schemes is
verified by comparing the average time spent on calculating one time layer. The results obtained in this paper can be
used to carry out further research on the numerical solving the problems of the theory of multiphase non-isothermal
flows using difference methods.
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