АКАДЕМИЯ НАУК КАЗАХСКОЙ ССР

Объединенный Ученый Совет Институтов зоологии и экспериментальной биологии

На правах рукописи

Д. Х. ЖАНГИСИН

НАСЛЕДОВАНИЕ
НЕКОТОРЫХ СВОЙСТВ ШЕРСТИ
И ГИСТОСТРУКТУРЫ КОЖИ
ПРИ СКРЕЩИВАНИИ ОВЕЦ
АРХАРОМЕРИНОС С БАРАНАМИ
СТАВРОПОЛЬСКОЙ ПОРОДЫ

СПЕЦИАЛЬНОСТЬ — 103 — ГЕНЕТИКА

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата биологических наук

Gargora three actions of the sound

АКАДЕМИЯ НАУК КАЗАХСКОЙ ССР

Объединенный Ученый Совет Институтов зоологии и экспериментальной биологии

На правах рукописи

Д. Х. ЖАНГИСИН

НАСЛЕДОВАНИЕ
НЕКОТОРЫХ СВОЙСТВ ШЕРСТИ
И ГИСТОСТРУКТУРЫ КОЖИ
ПРИ СКРЕЩИВАНИИ ОВЕЦ
АРХАРОМЕРИНОС С БАРАНАМИ
СТАВРОПОЛЬСКОЙ ПОРОДЫ

СПЕЦИАЛЬНОСТЬ - 103 - ГЕНЕТИКА

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата биологических паук

Алма-Ата — 1968

636,3.082 nc 279

> Работа выполнена в Институте экспериментальной биологии АН КазССР и Казахском государственном педагогическом институте им. Абая.

НАУЧНЫЕ РУКОВОДИТЕЛИ:

кандидат биологических наук, лауреат Государственной премии СССР А. И. Исенжулов, кандидат биологических наук В. И. Кариова

Ведущее предприятие — Алма-Атинский зооветерипарный институт.

ОФИЦИАЛЬНЫЕ ОППОНЕНТЫ:

доктор сельскохозяйственных наук, профессор А. Г. Панасенко, кандидат биологических наук Е. М. Сейджанов.

Диссертация изложена на 178 страницах машинописи, содержит 26 таблиц, иллюстрирована 10 обычными фотографиями, 6 микрофотоснимками и 10 диаграммами. Список литературы включает 191 название работ, в т. ч. 5 иностранных.

Защита диссертации состоится « 1968 г. на заседании Объединенного Ученого Совета Институтов зоологии и экслериментальной биологии Академии наук Казахской ССР.

Дата рассылки автореферата «/3» 1968 г. Отзывы (в двух экземплярах, заверенные печатью) просим присылать по адресу:

г. Алма-Ата, 72, проспект Абия, 38, Институт экспериментальной биологии АН КазССР, ученому секретарю Совети.

Ученый секрстарь Совета, доктор биологических наук А. М. МУРЗАМАДИЕВ

ВВЕДЕНИЕ

Зпачительную роль в увеличении производства шерсти, особенно топкой, паряду с другими зонами должны сыграть и горные районы Казахстана, где сосредоточено около 10% его

пастбищной территории.

Более широкне возможности для развития тонкорупного овцеводства в высокогорной зоне республики открылись с созданием повой тонкорупной породы овец казахский архаромеринос, ставшей к настоящему времени плановым улучшателем местных грубошерстных овец. С участием архаромериносов значительная часть грубошерстных и полугрубошерстных овец была преобразована в более продуктивные, тонкорупные и полутонкорунные. В результате уже к 1963 г. удельный вестопкой и полутонкой шерсти, получаемой в высокогорных районах, повысился до 96,4% против 24,6% в 1950 г.

Хозяйства, занимающиеся разведением овец породы казахский архаромеринос, преобладающую часть дохода получают от реализации шерсти. Поэтому, дальнейшее повышение шерстной продуктивности этой породы представляет важное на-

роднохозяйственное значение.

Одной из работ, проведенных в этом направлении, является скрещивание овец архаромеринос с баранами ставропольской

породы методом однократного прилития крови.

Известно, что изучение характера наследования продуктивных и биологических свойств при скрещивании различных пород овец представляет определенный интерес как в научном.

так и в практическом отношениях.

В литературе имеется немало работ по этому вопросу. Однако большинство из них посвящено изучению помесей первого поколения. Недостаточно полно еще освещены вопросы наследования качеств шерсти и гистоструктуры кожи при вводном скрещивании. Особенно мало работ, отражающих характер наследования гистоструктуры кожи овец. Нет почти также работ, где исследуются вопросы наследования признаков шерсти и кожи одновременно. Между тем, кожа является у овец одним из важных интерьерных признаков, тесно связанных с шерстью и обусловливающих ее качество. Поэтому зна-

ние гистоструктуры кожи даст возможность полнее вскрыть эти связи.

В пастоящей работе была поставлена задача изучить результаты вводного скрещивания маток породы казахский архаромеринос с баранами ставропольской породы и выявить характер наследования признаков шерстной продуктивности и пистоструктуры кожи.

Методика и материалы исследований

Экспериментальная часть настоящей работы проводилась в Узунбулакском совхозе Алма-Атинской области с 1961 по 1965 гг.

Опыты ставились по следующей схеме: первая группа маток архаромеринос (59 голов) осеменялась барапом ставропольской породы, вторая (52 головы) — барапом ставропольская × архаромеринос І поколения, третья группа маток-помесей І поколения ставропольская × архаромеринос (41 голова) — барапом архаромеринос и четвертая группа маток архаромеринос — бараном архаромеринос (контрольная).

В дальнейшем породность потомства этих групп будет обозначена соответственно следующими условными сокраще-

шиями: $CT \times AK$, $CT \times AK \times AK$, $AK \times CT \times AK$, AK.

Все бараны-производители относились к элите, были 1955

и 1957 гг. рождения.

Матки архаромеринос были в возрасте 2,5-4 лет, помеси I ноколения ставропольская \times архаромеринос — 2,5 лет, все принадлежали к элите и I классу, содержались на одной ферме в двух отарах, в сходных условиях кормления.

К числу признаков, обусловливающих шерстную продуктивность овец, относятся рост и развитие. Они изучались путем определения живого веса, взятия промеров и вычисления индексов телосложения.

У родительских групп овец живой вес (у 59 голов) и промеры (у 38 голов) определялись осенью, перед случкой, а у потомства — при рождении (промеры и живой вес у 96 голов), при отбивке (у 81 головы), в возрасте 6 месяцев (у 76 и 81 головы) и одного года (у 64—71 головы).

В связи с тем, что конституциональные особенности и уровень обменных процессов у животных связаны с составом и свойством крови, изучались некоторые гемопитерьерные показатели. Кровь исследовалась у 2—2,5-летних маток АК, СТХХАК, СТХАКХАК (по 5 голов), находящихся на высоте 1400 м над уровнем моря (в июне) и 2500—3000 м (в августе). Количество эритроцитов и лейкоцитов, содержание в сыворотке крови кальция и неорганического фосфора определялось по общепринятой методике; гемоглобии-гемометром типа ГС-3, в

котором за 100% шкалы принято 16,67 г% гемоглобина; общий белок в сыворотке крови — рефрактометрическим способом, а соотношение белковых фракций — методом электрофореза.

Изучение физических свойств шерсти подопытных овец проводилось по методике ВИЖа (1958). Образцы шерсти у родительских групп были взяты весной, во время стрижки и осенью (для определения топины), а у их потомства — при

рождении и в возрасте 1 года.

Изучались следующие свойства шерсти: тонина и уравненность, длина, извитость, крепость, содержание шерстного жира, количество минеральных примесей и выход чистого волокна. Шерстная продуктивность учитывалась у 159 животных (из них 100 голов в возрасте 1 года, остальные — взросные матки и бараны). Гонина шерсти исследовалась у 84 животных, в том числе: от 3 баранов-производителей, 23 овцематок и 58 ярок и баранчиков в возрасте 1 года (из числа последних у 41 головы тонина изучена и при рождении). Длина шерсти изучалась у 115 животных, из пих — у 89 голов в годичном возрасте, а у остальных — во взрослом состоянии. Другне свойства шерсти исследовались у 48 животных, в том числе у 35 голов в годичном возрасте и у 13 взрослых маток и баранов-производителей.

Длина шерсти (естественная и истипная) определялась путем измерения в каждом образце по 10 небольших пучков шерсти диаметром 0,5 см. Крепость шерсти определялась по пучку волокон на динамометре ДШ-3 и выражалась разрыв-

пой длиной в километрах.

Количество шерстного жира устанавливалось путем экстрагирования эфиром в аппарате Сокслета методом разницы.

Для изучения гистоструктуры кожи образцы брались путем бионсии у родительских групп (29 голов) осенью, а у их потомства (31 голова) — весной, в возрасте 1 года.

Важное значение в повышении шерстной продуктивности овец имеет изучение густоты шерсти на единицу площади ко-

жи, т. к. она положительно коррелирует с настригом.

Однако применяемые до настоящего времени методы опрелеления густоты шерсти по срезам кожи не учитывали ее сократимости при биопсии и дальнейшей обработке. В результате густота шерсти, установленная без учета сократимости кожи, завышалась настолько, насколько сокращалась данная проба кожи. Поэтому, густота шерсти изучалась пами с учетом сократимости кожи по методике В. И. Карновой (1962).

Плотность корней волос на 1 см² определялась по следую-

щей формуле:

Густота шерети на 1 см² кожи = $\frac{\text{среднее количество волос}}{\text{в поле зрения}} \times \frac{\text{площадь сжатого кусочка}}{\text{кожи}}$

Фиксация, обработка, приготовление срезов, окрашивание и изучение препаратов кожи проводились по четодике 11. А. Диомидовой (1957), Г. И. Роскина, Л. Б. Левинсопа (1957).

Пробы кожи заливались в целлоидии, срезы готовились нарадлельно и вертикально поверхности кожи, окрашивались

гематоксилин-эозином и по Ван-Гизону.

Ha вертикальных срезах кожи изучались общая толщина кожи, толщина эпидермиса, промежуточного и сетчатого слосв днаметр пучков коллагеновых волокон, глубина залегания корней волос, ширина луковиц, длина и ширина секреторных отделов потовых и сальных желез.

На горизоптальных срезах кожи определялись густога первичных и вторичных волос, количество волос в группах, отпошение вторичных волос к первичным. Полученные цифровые данные по густоте шерсти пересчитывались на 1 мм².

Микрофото препаратов кожи осуществлены с номощью микроскона МБИ-6 с окуляром \times 12,5 и объективом \times 3,5.

Характер наследовання признаков изучался сравнительным методом, путем сопоставления соответствующих признаков помесных животных и архаромериносов. Цифровые данные обрабатывались биометрическим способом (А. И. Федоров 1957; Н. А. Плохинский, 1961). Для выяснения связи между разными показателями вычислялся коэффициент корреляции между настригом шерсти и длиной, густотой шерсти, числом корней волос в группе, отношением вторичных волос к первичным, толщиной промежуточного слоя и между последним и длиной шерсти.

Кроме того, определялся показатель паследуемости (h²). Для этого использовался третий показатель наследуемости (Н. А. Плохинский, 1964), где градациями служили классы

матерей

Известно, что фенотипы животных формируются в процессе онтогенеза путем взаимодействия генотипа с внешней средой. В связи с этим в настоящей работе дана краткая характеристика природных условий районов разведения и хозяйственно-бнологических особенностей исходных пород.

ХАРАКТЕР НАСЛЕДОВАНИЯ ИЗУЧАЕМЫХ ПРИЗНАКОВ

1. Тип и телосложение, живой вес и гемоинтер верные показатели

Бараны-производители и овцематки, участвовавшие в опыте по складчатости кожи, экстерьеру и живому весу характеризовались следующими показателями. У барана архаромеринос складчатость и оброслость выражены слабее, чем у барана ставропольской породы, а у помесного барана

СТ × АК — промежуточного характера.

Матки архаромеринос были малоскладчатыми или бесскладчатыми, а у маток ${\sf CT} imes {\sf AK}$ имелись небольшие продоль-

ные складки в виде бурды.

Баран архаромеринос по высоте в холке (77,5 см) превосходит барана СТ (68,5 см) и СТ \times АК (70,5 см), по по ширине и обхвату груди, длине туловища (27; III; 76 см) он мало отличается от них (28; 108; 73 и 27, III, 5; 78 см). Эти промеры у маток архаромеринос (67,9; 28,2; 103,9; 69 см) несколько выше, чем у маток СТ \times АК (65; 27,6; 102,5; 66,9 см).

В 1960—1961 гг. баран архаромеринос имел живой вес 80-90 кг, а бараны СТ породы и СТ \times АК — соответственно 72—78 и 80-82 кг. Взрослые овцематки архаромеринос весили 60,4 кг, в 2,5 года — 49,9 кг, а матки СТ \times АК в том же

возрасте — 49,2 кг.

Следовательно, баран AK отличается от барана CT меньшей складчатостью кожи, большим ростом и весом, а у барана $CT \times AK$ эти показатели промежуточные. По промерам и весу матки AK мало отличаются от $CT \times AK$, по у последних лучше выражена складчатость кожи.

Сравнительное изучение номесного потомства с архаромериносами показало, что номеси обладают несколько лучшей складчатостью кожи (особенно $CT \times AK$ и $CT \times AK \times AK$), которая выражена у них в основном в виде бурды, а иногда еще и небольного фартука, встречающегося преимущественно у баранчиков.

Средние величины высотных промеров при рождении у ягнят архаромеринос несколько больше, чем у помесных. Однако по глубине груди, ширине в моклоках, обхвату груди и пясти, косой длине туловища, длине и ширине головы помес-

ные ягнята почти не уступают архаромериносам.

В 6-месячном возрасте высотные промеры у помесных ярок всех групп почти одинаковы с аналогичными показателями архаромериносов, а помесные баранчики по этим промерам отстают от АК в I поколении на 5,6—7,8% и во II поколении на 4,4—3,9%. Другие промеры помесей почти такие же, как у архаромериносов.

В годичном возрасте баранчики архаромеринос имеют высоту в холке 66.5 ± 0.5 см, высоту передней ноги 47 ± 0.31 см, иприну в илечелопаточном сочленении 20.5 ± 0.59 см, обхват груди 94.5 ± 0.79 см, косую длину туловища 70.5 ± 0.64 см, длину головы 20.7 ± 0.3 см, а ярки — соответственно 64.1 ± 1.04 ; 43.6 ± 0.43 ; 17.4 ± 0.29 ; 88.6 ± 2.1 ; 66.4 ± 0.4 ; 18.7 ± 0.24 см.

К годичному возрасту помесные ярки всех групп по большинству промеров сравниваются с чистопородными. Баранчики I поколения несколько отстают по отдельным промерам от четвертькровных (по СТ породе), а последние мало отличают-

ся от архаромериносов.

Годовалые баранчики СТ \times АК отстают от АК по высоте передней ноги на 2.7 ± 0.4 см (P=0.999), ширине илечелопаточного сочленения — на 2.2 ± 0.8 см (P=0.95), косой длине туловища — на 3.5 ± 1.1 см (P=0.99). Следовательно, помесные баранчики в отличие от архаромериносов менее высоконоги и растянуты, по более массивны и костисты.

При рождении архаромериносы имеют $(5,1\pm0,1\ \mathrm{kr}\ y\ ба-ранчиков и\ 4,8\pm0,15\ \mathrm{kr}\ y\ ярок)$ сравнительно одинаковые показатели живого веса $(5\pm0,13\ \mathrm{u}\ 4,7\pm0,16\ \mathrm{kr})$ с помесями I поколения, но при отъеме $(36,3\pm1,61-30,4\pm1,3\ \mathrm{kr})$, в 6-месячиом $(38,2\pm1,0-33,4\pm1,2\ \mathrm{kr})$ и годичном $(51,8\pm1,2-37,5\pm0,85\ \mathrm{kr})$ возрастах они превосходят помесей: по баранчикам — соответственно на $3,5\pm1,89\ \mathrm{kr}\ (\mathrm{td}=1,8),\ 1,7\pm1,48\ \mathrm{kr}\ (\mathrm{td}=1,1),\ 2,9\pm1,54\ \mathrm{kr}\ (\mathrm{td}=1,88),\ по\ яркам-па <math>1,7\pm1,7\ \mathrm{kr}\ (\mathrm{td}=1,0),\ 2\pm2,08\ \mathrm{kr}\ (\mathrm{td}=0,96),\ 0,7\pm1,08\ \mathrm{kr}\ (\mathrm{td}=0,65).$

По сравнению с барапчиками, между ярками AK и $CT \times AK$ меньше разницы в живом весе при отъеме и незначительная — в годичном возрасте. По живому весу баранчики и ярки $CT \times AK \times AK$ при рождении $(5\pm0,17-4,9\pm0,16$ кг) не уступают AK, но при отъеме, в 6-месячном возрасте отстают от AK: по баранчикам — соответственно на $1,5\pm1,92$ кг $(td=0,8),\ 0,4\pm1,48$ кг $(td=0,3),\$ nо яркам — на $1,4\pm1,9$ кг $(td=0,7),\ 1,4\pm1,9$ кг (td=0,7). В годичном возрасте их живой вес (51,1-37,6 кг) сравнивается с AK.

Барапчики $\Lambda K \times CT \times AK$ имеют разницу в живом весс в пользу архаромериносов: при рождении 0.6 ± 0.24 кг (P = 0.95), при отъеме 4.3 ± 2.41 кг (td = 1.8), в 6-месячном возрасте 1.2 ± 2.01 кг (td = 0.6), а у ярок эта разница составляет соответственно 0.8 ± 0.24 кг (P = 0.99), 3.4 ± 1.7 кг (td = 2.8) и 1.3 ± 1.84 кг (td = 2.8).

В годичном возрасте их живой вес $(51,6\pm0,9-37,3\pm0,68\,\mathrm{kr})$ такой же, как у АК. Эти данные согласуются с указанием М. И. Санникова (1964) о том, что по живому весу четвертькровные помеси превосходят полукровных.

Таким образом, складчатость кожи несколько лучше выражена у животных $CT \times AK$ и $CT \times AK \times AK$, чем у $AK \times CT \times AK$ и AK.

Помесные ярки при рождении, а баранчики еще и в 6-месяцев по высотным промерам отстают от архаромериносов, по в возрасте 1 года помесные ярки по промерам почти сравниваются с чистопородными. Годовалые баранчики $CT \times AK$ по сравнению с AK имеют менее высокий рост, укороченное туловище, недостаточную ширину в плечах и высоту пог. Ба-

ранчики $CT \times AK \times AK$ и $AK \times CT \times AK$ имеют такой же

рост, как и АК.

По живому весу помесные животные несколько отстают от архаромериносов при отъеме и в 6 месяцев; к годичному возрасту четвертькровные помеси ($CT \times AK \times AK$ и $AK \times CT \times AK$) сравниваются с AK, а баранчики $CT \times AK$ уступают им на 5,5%, ярочки — на 1,9%.

Из изложенного видно, что на живой вес и промеры ярок СТ × АК и животных И поколения большее влияние оказали архаромериносы, а баранчиков I поколения— ставроноль-

ская порода.

Пзучение гемонитерьерных особенностей показало, что на высоте 1400 м над, уровнем моря матки АК, $CT \times AK$, $CT \times AK \times AK$ по содержанию гемоглобина имсют одинаковые показатели (60,4; 60; 60%), между ними нет существенной разницы и по количеству лейкоцитов (8,6; 8,5; 7,9 тыс.). Однако по числу эритроцитов животные $CT \times AK$ и $CT \times AK \times AK$ превосходят AK.

На высоте 2500—3000 м над уровнем моря у овец АК и СТ \times АК показатели крови повышаются (кроме эритроцитов у СТ \times АК). Почти равными оказались число эритроцитов у АК и СТ \times АК \times АК (11,07 –11,34 млн. против 10,2 млн. у СТ \times АК) и содержание гемоглобина у АК и СТ \times АК

(62,4-63,1% против 55% у СТ \times АК \times АК).

Количество общего белка в сыворотке крови на высоте 1400 м над уровнем моря у маток АК и СТ \times АК \times АК (8,3—8,38 г%) почти одинаковое, а у СТ \times АК (7,82 г%) несколько меньше. Животные этих групп по содержанию альбуминовой фракции сывороточных белков (44,9; 43,6; 44,8%), глобулипов (55,1; 56,4; 55,2%), мало отличаются между собой; но гамма-глобулиновая фракция белков лучше выражена у помесных овец СТ \times АК и СТ \times АК \times АК (29,5—29,1%), чем у АК (26,1%). На высоте 2500—3000 м пад уровнем моря количество общего белка повышается у овец АК и СТ \times АК до 8,62 и 8,36 г%, а у СТ \times АК \times АК составляет 8,18 г%. У первых песколько возросло содержание альбуминов (46,38—47,33%), а у АК и СТ \times АК \times АК \times Гамма-глобулинов (31,13 — 30,78%).

Следовательно, по основным гемоинтерьерным показателям помесные овцематки $CT \times AK$ и $CT \times AK \times AK$ существенно не отличаются от архаромериносов, которым присущи

довольно высокие окислительные свойства крови.

2. Шерстная продуктивность и физические свойства шерсти

Показатели настрига шерсти у барана-производителя СТ породы в 1960—1962 гг. были (8,1; 7,6; 9,9 кг) выше, чем у барана архаромеринос (5,4; 5,8; 5,4 кг), а у помесного барана

 ${\rm CT} \times {\rm AK}$ (6,9; 7,3; 7,5 кг) — промежуточными или близкими к CT. Настриг шерсти у маток архаромеринос старше 3 лет в 1962 г. составил 3,5 кг, а у маток CT \times AK в возрасте 3 лет— 3,75 кг.

Таблаца 1

Настриг шерсти овец в годичном возрасте, кг

		Бара	нч я к	Н		q R	о ч к и	
Группа животных	11	M_m	коле- бания	Chulthii incpern	и	$M \pm m$	коле- бання	средний настриг персти в
АК	11	3,2 ±0,18	2.5 - 3.5	100,0	19	2,44 ±0.16	1,9 - 3,7	100,0
CT >AK	10	3,9 ±0,22	2,6—1,8	121,9	18	2,94 ±0.08	2,4-3,5	120,5
CT×AK×AK	10	3,34 ±0,13	2,6-4,2	104,4	11	2,86 ±0,13	2-3,5	117.2
$AK \times CT \times AK$	9	3,4 ±0,12	2,7-3,9	106.2	12	2,57 ±0,08	2-2,9	105,3

Как видно из данных таблицы 1, по настригу шерсти помесное потомство в годичном возрасте превосходит архаромериносов.

Наилучшие результаты получены у помесей I поколения $CT \times AK$, которые дали на 20,5-21,9% больше шерсти, чем архаромериносы. Из четвертькровных лучшим настригом обладают ярки $CT \times AK \times AK$, превысившие AK на 17,2%.

Баранчики и ярки СТ \times АК, ярки СТ \times АК \times АК отличаются от АК по настригу шерсти соответственно на $0.7\pm0.26\,\mathrm{kr}$ (P=0.95), $0.5\pm0.18\,\mathrm{kr}$ (P=0.99) и $0.42\pm0.2\,\mathrm{kr}$ (P=0.95); разность настригов АК и СТ \times АК \times АК по баранчикам на $0.14\pm0.2\,\mathrm{kr}$ и АК \times СТ \times АК по баранчикам на $0.14\pm0.2\,\mathrm{kr}$ и АК \times СТ \times АК по баранчикам на $0.2\pm0.2\,\mathrm{kr}$, а яркам на $0.13\pm0.16\,\mathrm{kr}$ является недостоверной. Животпые СТ \times АК по настригу шерсти превосходят ярок АК \times СТ \times АК на $0.37\pm0.1\,\mathrm{kr}$ (P=0.999) и баранчиков АК \times СТ \times АК и СТ \times АК \times АК — соответственно на $0.5\pm0.22\,\mathrm{kr}$ (P=0.95) и $0.56\pm0.23\,\mathrm{kr}$ (P=0.95).

Изучение соотношения между пастригом шерсти и живым весом показывает, что у барапчиков архаромеринос опо составляет 1:16, у ярок 1:15,3, а у их отца 1:16, матерей 1:17, у животных $CT \times AK$ — соответственно 1:12,5; 1:12,5; 1:8; 1:17; у овец $CT \times AK \times AK$ — 1:15; 1:13; 1:10; 1:17; у животных $AK \times CT \times AK$ — 1:15; 1:14,5; 1:16; 1:13.

У баранчиков и ярок $CT \times AK$, ярок $CT \times AK \times AK$ и $AK \times CT \times AK$ наблюдается промежуточный характер на-

следования соотношения настрига и живого веса отцов и матерей. Баранчики $CT \times AK \times AK$ уклоняются в сторону материнского соотношения, а баранчики $AK \times CT \times AK$ отновского.

Исследованные животные имеют разные показатели наследуемости настрига шерсти (h^2_3): более высокие у баранчиков и ярок архаромеринос (77-39,1%) и СТ \times АК (59-16,4%), относительно инэкие — у животных СТ \times АК \times АК (3,3-20%) и АК \times СТ \times АК (21-11,1%). Однако эти дан-

ные статистически недостоверны.

Топина шерсти осепнего образца у барана-производителя архаромеринос составляет $27\pm0,54$ микрона, или 58 качества, а у баранов СТ породы и СТ \times АК — соответственно $23,74\pm0,39$ микрона, или 60 качества и $24,77\pm0,48$ микрона, или 60 качества. Шерсть нижней зоны, а также весениего

образца несколько тоньше.

У маток AK весной шерсть тоньше $(19,1\pm0.49$ микрона. пли 70 качества), чем осенью $(24,9\pm0.46$ микрона, или 60 качества), так же, как у маток $CT \times AK$, имеющих тонину шерсти соответственно $19,68\pm0.44$ микрона, или 70 качества и $24,7\pm0.46$ микрона, или 60 качества. При рождения тонина шерсти ярок и баранчиков AK и их помесей относится к 70 качеству.

В возрасте 1 года по диаметру шерстинок баранчики $CT \times AK$ ($20\pm0,41$ микрона), $CT \times AK \times AK$ ($19,8\pm0,41$ микрона) и $AK \times CT \times AK$ ($19,4\pm0,37$ микрона) уступают баранчикам AK ($20,8\pm0,36$ микрона) соответственно на

 0.8 ± 0.52 , 1 ± 0.52 и 1.4 ± 0.5 (P=0.95) микрона.

Одинаковой является тонина шерсти ярок АК (19 \pm 0,53 микрона) и СТ \times АК (18,9 \pm 0,38 микрона), а у ярок СТ \times \times АК \times АК и АК \times СТ \times АК она ниже, чем у АК соответственно на 1,6 \pm 0,65 (P=0,95) и 2,3 \pm 0,67 (P=0,99) микрона.

Показатели коэффициента вариации тонины шерсти помесных животных соответствуют нормативам ГОСТа, а у ярок АК (28,4) несколько превышают их.

Длина шерсти родительских групп характеризуется следующими данными: у барана AK в естественном состоянии она составляет 7 см, в распрямленном виде — 9 см, а у баранов CT породы и $CT \times AK$ — соответственно 8,5-10,5 и 10-12,5 см.

Матки архаромеринос имеют естественную длину шерсти 7,37 см с колебаниями от 6,5 до 8,5 см, в распрямленном виде — 9,44 см с колебаниями от 8 до 12 см. У маток $CT \times AK$ эти показатели равны соответственно 9 (8,5—9,3) и 11,1 (10,3—11,8) см.

Данные о длине шерсти у потомства в возрасте 1 года представлены в таблице 2.

Длина шерсти у овец архаромеринос и их помесей в возрасте 1 года (см)

	T		Длина ш	ерсти	
Parama		естест	венная	п распряма	енном виде
Fiynna	11	ере шяя	колебания	средняя	колебания
		Бара	инчики		
AK	1111	7.5 ± 0.19	6,5 - 8,5	9.4 ± 0.21	8 -10,5
CT AK	10	8.3 ± 0.31	7 — 9,5	10.5 ± 0.28	9 -1)
$CT \times AK \times AK$	10	8.8 ± 0.26	7,5 - 10	$11,0 \pm 0,26$	9,5-12
$AK \times CT \times AK$	9	7,4 ±0,14	7,0- 8,0	9,0±0,16	8.5 - 9.7
		51	рки		
AK	13	7.9 ± 0.15	70-85	10.3 ± 0.2	9,2-11,5
CT ~ AK	15	8.58 ± 0.2	7,5 -10,0	10.7 ± 0.25	9 -12,5
$CT \angle AK \times AK$	11	$8,2 \pm 0.22$	7 — 9,5	9.9 ± 0.18	8.8-11.0
$AK \times CT \times AK$	10	8.0 ± 0.18	7,5— 9,0	$9,9\pm0,18$	9,0-11,0

Баранчики и ярки $CT \times AK$ и $CT \times AK \times AK$ по длине шерсти превосходят AK и $AK \times CT \times AK$, имеющих одинаковые показатели.

У баранчиков СТ \times АК естественная длина шерсти больше, чем у АК на 0,8 \pm 0,34 см (P=0,95), а в распрямленном виде — на 1,1 \pm 0,34 см (P=0,99); ярки СТ \times АК по этим показателям превосходят АК соответственно на 0,68 \pm 0,24 см (P=0,99) и 0,4 \pm 0,31 см (td=1,29).

Разность в показателях длины шерсти баранчиков АК и СТ \times АК \times АК в естественном состоянии составляет 1,3 \pm \pm 0,3 см (P=0,999) и в распрямленном виде — 1,6 \pm 0,33 см (P=0,999), а у ярок она по естественной длине равна 0,3 \pm \pm 0,26 см (td=1,15).

Процент шерстного жира к весу необезжиренной шерсти больше всего у барана СТ породы (30), меньше — у барана архаромеринос (24), а СТ \times АК (26,3) запимает промежуточное положение. У маток СТ \times АК этот показатель (21,8) несколько выше, чем у маток АК (17,7).

По содержанию шерстного жира годовалые баранчики и ярки AK (20,45±0,72 и 18,7±1,5%) уступают $CT \times AK$, но различие между инми (по баранчикам — 1,35±2,21%, по яркам — 2,2±1,8%) незначительное. У ярок $CT \times AK \times AK$ шерстного жира меньше, а у $AK \times CT \times AK$ — больше, чем у AK соответственно на 4,1±1,69%, (P=0,95) и 3,1±1,52% (td=2,04).

По количеству минеральных примесей между животными АК и помесями нет достоверной разницы.

Крепость пучка шерсти (выраженная разрывной длиной в км) наибольшая у барана СТ (9,7), несколько меньше у AK (9,39) и промежуточная у барана $CT \times AK$ (9,47); этот показатель у маток $CT \times AK$ (8,7 км) выше, чем у AK (7,49).

Помесное потомство в возрасте 1 года также отличается от архаромериносов лучшей крепостью шерсти. Баранчики и ярки АК по крепости шерсти $(7,56\pm0,1$ и $7,53\pm0,28$ км) уступают аналогичным животным $CT\times AK$ соответственно на $0,84\pm0,24$ км, (P=0,99) и $0,55\pm0,33$ км (td=1,66). Показатели крепости шерсти ярок $CT\times AK\times AK$ и $AK\times CT\times AK$ несколько выше, чем у AK соответственно на $0,39\pm0,44$ и $0,17\pm0,51$ км.

У барана архаромеринос выход чистого волокна составляет — 51.1%, у маток AK = 50.3%, что выше, чем у баранов CT породы (49,3%), CT \times AK (50,4%) и у маток CT \times AK (48,0%).

Процент выхода чистого волокна в годичном возрасте у баранчиков архаромеринос (51,1) несколько больше, чем у СТ \times АК (50,2), а у ярок АК и СТ \times АК эти показатели (53,0 и 53,4) почти одинаковые. Ярки СТ \times АК \times АК и АК \times СТ \times АК имеют процент выхода чистого волокна (52,7 и 52,2) несколько меньший, чем у АК.

По абсолютному выходу (в кг) чистого волокиа в возрасте 1 года архаромериносы уступают СТ \times АК по баранчикам на 19,6%, по яркам — на 21,7%, СТ \times АК \times АК — на 17% и

 $AK \times CT \times AK$ — на 3,9%.

Таким образом, в годичном возрасте лучшей шерстной продуктивностью отличаются помеси I поколения $CT \times AK$, которые дали по баранчикам на 21,9%, по яркам — на 20,5% больше шерсти, чем архаромериносы, что объясияется влиянием наследственности отцовской (ставропольской) породы. Баранчики и ярки $CT \times AK \times AK$ и $AK \times CT \times AK$ по настригам шерсти отстают от животных I поколения, но превосходят архаромериносов соответственно на 4,4-17,2 и 6,2-5,3%.

Кроме того, баранчики и ярки I поколения $CT \times AK$, имея почти такую же топину шерсти, как и архаромерниосы, отличаются от них лучшей уравненностью шерсти по тонине, более высокими показателями длины (на 10,6 и 8,6%) и крепости шерсти (на 11,1 и 7,0%), большим содержанием шерстного жира, несколько укрупненной, растянутой извитостью шерсти с шелковистым блеском и белым цветом жиропота, более повышенным абсолютным выходом чистого волокия (соответственно на 19,6 и 21,7%); все это — результат проявления в потомстве отцовской наследственности (ставрополь-

ской породы) и они согласуются с указаниями ряда авторов (Всяких, 1956; Попов, 1957; Ермеков, 1958; Турсунов, 1958; Литовченко, 1959; Николаев, Литовченко, 1960; Пшеничный, 1960; Пстров и Метлицкий, 1962; Капрова, 1963; Санников, 1964; Кдырниязов, 1965 и др.) о том, что ставропольские помеси имеют более высокие настриги и лучшие шерстные качества, чем местные животные и помеси других пород.

По основным физическим свойствам шерсти животные $CT \times AK \times AK$ близко стоят к помесям I поколения, а овцы $AK \times CT \times AK$ — уклоняются в сторону архаромериносов.

Для животных I поколения $CT \times AK$ и четвертькровных (по ставропольской породе) ярок характерно промежуточное соотношение настрига и живого веса их родителей, а четвертькровные баранчики по соотношению продуктивности уклоняются в сторону архаромериносов.

3. Гистоструктура кожи

По толщине кожи и се слоев родительские группы характеризуются следующими данными. Баран-производитель архаромеринос по толщине кожи (2030,4 микрона) и эпидермиса (23,1 микрона) имеет более высокие показатели, чем баран СТ (1685 и 18,5 микрона), а баран СТ \times АК занимает среднее положение (1873,3 и 21 микрон).

В процентах от общей толщины кожи у барана АК промежуточный слой (63,4) меньше, а сетчатый слой (35,4) больше, чем у баранов СТ (76,4 и 22,5) и СТ \times АК (78,1 и 20,8). Диаметр коллагеновых пучков у них равен соответственно 12,1; 11,7; 11,7 микронам.

У маток АК толщина кожи (1630,8 микрона), эпидермиса (18 микрона) и диаметр коллагеновых пучков (11,6 микрона) несколько выше, чем у $CT \times AK$ (1603,8; 16,7; 10,4 микрона).

Промежуточный слой от общей толщины кожи у маток AK составляет 72,3%, у маток $CT \times AK - 70,5\%$, а сетчатый слой — соответственно 26,5 и 28,4%. Следовательно, у барана-производителя архаромеринос лучше развиты толщина кожи, энидермис и сетчатый слои, а у баранов CT и $CT \times AK$, наоборот, хорошо выражен промежуточный слой кожи, что указывает на лучшее развитие шерстных качеств. По диамстру коллагеновых пучков между ними нет существенных различий. По указанным показателям матки AK мало отличаются от маток $CT \times AK$, хотя у первых отмечается несколько большая толщина кожи и энидермиса.

Tab.mua 3

Толщина кожи у овец архаромеринос и их помесей в возрасте 1 года (в микронах)

				Промежуточный слоп	Mit crott	Сетчатый слоп	лоп	Пиомо
Иол и порода	Количе- ство животных	Общая толщина	Эпизеринс	в микронах	в % от общей толщины	в микронах	6 % 0T 06 nteh	КОЛЛЯГе- ПОВЫХ ПУЧКОВ
			Баран	нчики				
Архаромериносы	9	2090 ±69,8	18,8±1,09	1223,9±24,9	58,5	$847,2\pm69.5$	40.5	8 4
$CT \times AK$	m	2096,7 ± 60,8	17.0 ± 0.11	1464.7 ± 27.1	69,8	$615,0 \pm 33$	29.3	7,7
$CT \times AK \times AK$	4	2007,4 ± 47,8	19,0±0,89	1407.6 ± 53.1	1,07	581 ±66,6	58.9	0,6
$AK \times CT \times AK$	4	2094,1 ± 163,6	20,4 ± 1,62	1231,6±16,4	58.8	812 ±162,3	40,2	6'8
			4 d B	" 2			ù	
Архаромериносы	es	1834,7±43,6	25,2±0,81	1326 ±53	72,3	483,5±47,5	26.3	10,5
$CT \times AK$	ro	2192.2±132,6	20,8±0,81	$1.95,3 \pm 64.8$	68,3	676,0±110	30,8	9'1
$CT \times AK \times AK$	m	2112,9±115	20,6±2,0	1379 ±10	65.3	713,3±116	33,7	7,4
$AK \times CT \times AK$	8	2053,6±202	18,4 ± 2,0	1392,6 ± 9.5	8,79	$642,6 \pm 106$	31,3	6'2
15	_		_		_		-	

Как видно из таблицы 3, помесное потомство в возрасте 1 года (за исключением баранчиков $CT \times AK \times AK$) по толщине кожи превосходит архаромериносов, но различия по баранчикам небольшие; разница в показателях ярок AK и $CT \times AK$ внолне достоверная (P = 0.95), AK и $CT \times AK \times AK$ — близка к достоверной (td = 2.25). Эти данные согласуются с работами H. A. Диомидовой (1957), B. M. Карновой (1953, 1954) и др., нашедших утолщение кожи у помесных животных.

Эпидермис слабо развит у барапчиков $CT \times AK$, лучше выражел у $AK \times CT \times AK$, а у животных AK и $CT \times AK \times AK$ одинаково развит и запимает промежуточное положение.

По яркам толщина эппдермиса больше у АК, чем у животных $CT \times AK$ (P = 0.99), $CT \times AK \times AK$ (td = 2.1) п $AK \times CT \times AK$ (P = 0.95).

По развитию эпидермиса баранчики и ярки $CT \times AK$ и ярки $CT \times AK \times AK$, $AK \times CT \times AK$ уклоияются в сторону

ставропольской породы.

Промежуточный слой кожи хорошо развит у баранчиков $CT \times AK$ и $CT \times AK \times AK$ в отличие от AK (достоверность их разности с AK соответствует P = 0,999 и P = 0,95), а у баранчиков $AK \times CT \times AK$ этот слой почти такой же, как у AK. У помесных ярок толщина промежуточного слоя больше, чем у архаромериносов, но в процентах от толщины кожи показатели у них почти одинаковые.

Сетчатый слой кожи по баранчикам лучше развит у AK и $AK \times CT \times AK$, слабее — у животных $CT \times AK$ и $CT \times AK \times AK \times AK$. Разница в показателях AK и $CT \times AK$, AK и

 $CT \times AK \times AK$ достоверна с P = 0.95.

По развитию сетчатого слоя кожи ярок, архаромериносы несколько уступают помесям, но различия недостоверные. Диаметр пучков коллагеновых волокон меньше у баранчиков $CT \times AK$ (7,7 микрона), больше у $CT \times AK \times AK$ (9,0 микрона) и $AK \times CT \times AK$ (8,9 микрона), а у AK равен 8,4 микрона; по яркам он больше у AK, чем у помесных животных, показатели которых сравнительно одинаковые.

Глубина залегания корней волос в коже у барана-производителя СТ породы составляет 77,5 % от общей толщины кожи, у баранов СТ \times АК и Λ K — 76,3 и 69,6 %.

Густота первичных и вторичных волос на 1 мм² кожи, количество вторичных волос на один первичный и число корней волос в группе составляют соответственно: у барана $AK=2,1;\ 47,4;\ 22,5;\ 35,6,\ y$ барана $CT=1,7;\ 50,7;\ 29,8;\ 57,3,\ y$ барана $CT\times AK=2,4;\ 64,4;\ 26,8;\ 54,3.$

Матки архаромеринос по глубние залегания корней волос (74,1 %) имеют почти такие же показатели, как и матки

СТ × АК (73,0). У маток СТ × АК густота первичных волос составляет 2,4, вторичных — 42,8, отношение вторичных волос на один первичный — 17,8, число корней волос в группе — 38,5, а у маток АК эти показатели меньше и соответственно равны 2,3; 36,8; 16,0; 36,4. Таким образом, баран-производитель СТ отличается от барана АК большей глубиной залегания корней волос, лучшей их густотой, более повышенным огношением вторичных волос на один первичный и числом корней волос в группе, а баран СТ × АК по этим показателям близок к СТ или запимает промежуточное положение.

У маток $CT \times AK$ в отличне от архаромериносовых лучше выражены густота шерсти на $1\,$ мм 2 кожи, отношение вторичных волос на один первичный и число корней волос в группе, а глубина залегания корней волос у них одинаковая.

Данные об изменении корпей волос в коже и густоте шерсти помесного и чистопородного потомства в возрасте 1 года

представлены в таблице 4.

По баранчикам номеси $CT \times AK$ и $CT \times AK \times AK$ отличаются от AK большей глубиной залегания корней волос: у первых она составляет соответственно 71,5 и 71,1% от общей толщины кожи против 59,8% у баранчиков AK и 60,1% у $AK \times CT \times AK$. Достоверность различий в показателях данного признака баранчиков AK и $CT \times AK$ соответствует P = 0.999, AK и $CT \times AK \times AK - P = 0.95$.

Глубина залегания корней волос наибольшая у ярок $CT \times AK$ и наименьшая у AK, а у ярок $CT \times AK \times AK$ и $AK \times CT \times AK$ она промежуточная; однако в процентах от толщины кожи показатели помесных и чистопородных ярок являются почти сходными.

По густоте первичных и вторичных волос баранчиков архаромериноса превосходят $CT \times AK$ (td=3,8; P=0,99) и $AK \times CT \times AK$ (td=0,3).

У помесных ярок густота корней волос на 1 мм 2 кожи также выше, чем у ярок AK: у CT \times AK — на 28,4 %, CT \times AK \times AK — на 30,6 % и AK \times CT \times AK — на 16,7 %, но эти разли-

чия педостоверные.

Но количеству вторичных волое на один нервичный показатели баранчиков ΛK меньше, чем у $CT \times AK$ (td=2,5; P=0,95), $\Lambda K \times CT \times \Lambda K$ (td=1,33) и одинаковые с баранчиками $CT \times \Lambda K \times \Lambda K$; по яркам этот признак лучше выражен у всех номесей, чем у ΛK , по достоверная разница наблюдается лишь между показателями ярок ΛK и $CT \times \Lambda K$ (P=0,999).

Число корней волос в группе у баранчиков $CT \times \Lambda K$ и $AK \times CT \times AK$ больше, чем у AK, а у $CT \times AK \times AK$ почти столько же, сколько и у AK; разница между данными баранчиков ΛK и $CT \times AK$ является достоверной (P=0.95), а AK и

2 - 4058

Изменение корней волос в коже овец архаромеринос и их помесей в возрасте 1 года

в минероциях и м. общей полиции в с е г о полиции в с е г о полиции количество волос на 1 первичи первичных волос на 1 первичных волос на 1 первичных волос на 1 первичный пер			Глубина залегания	SCALIFIE	Lycrory googleft Bozoc Ha 1 MM	2 1 мм 2		
В мижроцях общей в с е г о первич в т. ч. первичими полициы в с е г о первич первичими полициы в 53.3±4,7 3.37 14.8±0.66 14.99,4±23,5 71,5 72±1.47 3.5 19.5±1.8 1426,5±5,7 71,1 48.7±5,2 3,1 14.7±1.04 1259,7±13,2 60.1 56.2±8,8 3.15 16.8±1,35 1517,3±64,2 69.2 55.1±7,4 3.36 15.4±0.3 1404,2±13,5 66.5 56.1±6,7 3.78 12.2±0,9 1419,1±98,5 69.1 50.1±9,7 3.78 12.2±0,9						www t mu con-	Количество	4 uc.no
1. Варанчики 59,8 53,3±4,7 3,37 14,8±0,66 71,5 72 ±1,47 3,5 19,5±1,8 71,1 48,7±5,2 3,1 14,7±1,04 60,1 56,2±8,8 3,15 16,8±1,35 11. Ярки 42,9±6,2 3,6 10,9±0,09 69,2 55,1±7,4 3,36 15,4±0,3 66,5 56,1±6,7 4,04 12,9±1,04 69,1 50,1±9,7 3,78 12,2±0,9	Количестно жилотпых	0.4	э микронах	n % or ofitten Tommula	всего	в т. ч. первич- ных	вторичных волос на 1 первичный	корпей полог
59,8 53,3±4,7 3,37 14,8±0,66 71,5 72 ±1,47 3,5 19,5±1,8 71,1 48,7±5,2 3,1 14,7±1,04 60,1 56,2±8,8 3,15 16,8±1,35 11,8pixu 3,6 10,9±0,09 69,2 55,1±7,4 3,36 15,4±0,3 66,5 56,1±6,7 4,04 12,9±1,04 69,1 50,1±9,7 3,78 12,2±0,9				. Баранчи	ки			
71,5 72 ±1,47 3.5 19,5±1,8 71,1 48,7±5,2 3,1 14,7±1,04 60,1 56,2±8,8 3,15 16,8±1,35 H. Apkat 73,7 42,9±6,2 3,6 10,9±0,09 69,2 55,1±7,4 3,36 15,4±0,3 66,5 56,1±6,7 4,04 12,9±1,04 69,1 50,1±9,7 3,78 12,2±0,9	9	-		59,8	53,3±4.7	3,37	14.8 ± 0.66	37.9±1
71,1 48,7±5,2 3,1 14,7±1,04 60.1 56,2±8,8 3,15 16,8±1,35 16.8±1,35 173,7 42,9±6,2 3,6 10,9±0,09 66,5 56,1±7,4 3,36 15,4±0,3 66,5 56,1±6,7 4,04 12,9±1,04 69,1 50,1±9,7 3,78 12,2±0,9	10	,	$1499,4 \pm 23,5$	71,5	72 ±1.47	3.5	19,5±1,8	+9,0±3,4
60.1 56.2±8.8 3.15 16.8±1,35 H. Rpku 73.7 42.9±6,2 3.6 10.9±0,09 69.2 55.1±7,4 3.36 15.4±0.3 66.5 56.1±6.7 4.04 12.9±1,04 69,1 50.1±9,7 3.78 12.2±0,9	4		1426,5±51,7	71,1	$48,7 \pm 5,2$	3,1	14.7 ± 1,04	$36,2\pm1.6$
11. A pixu 3.6 10.9 + 0.09 73.7 42.9 ± 6,2 3.6 10.9 + 0.09 69.2 55.1 ± 7.4 3.36 15.4 ± 0.3 66.5 56.1 ± 6.7 4.04 12.9 ± 1,04 69,1 50.1 ± 9,7 3.78 12.2 ± 0.9	#		$1259,7 \pm 13,2$	1.09	$56,2 \pm 8,8$	3,15	$16.8 \pm 1,35$	5,5±31
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				П. Ярки				
69.2 55.1±7.4 3.36 15.4±0.3 66.5 56.1±6.7 4.04 12.9±1,04 69.1 50.1±9,7 3.78 12.2±0.9	00		1354,5±61	7.8.7	42.9 ± 6.2	3,6	60'0+6'01	31.0±2
66,5 $56,1\pm6.7$ 4,04 $12,9\pm1,04$ 69,1 $50,1\pm9,7$ 3,78 $12,2\pm0,9$	17		1517,3±64,2	69,2	55,1±7,4	3,36	15.4 ± 0.3	40.5±2,
69,1 50.1 ± 9.7 3.78 12.2 ± 0.9	က		$1404,2 \pm 13,5$	66,5	56,1±6,7	4.04	12.9 ± 1.04	38.2 ± 3.0
	ന		1419,1 ± 98,5	1,69	50.1 ± 9.7	3,78	12.2 ± 0.9	36,6±1,

 $AK \times CT \times AK$ — близка к ней. У помесных ярок этот показатель выше, чем у ярок АК, с паличием достоверной разницы между ΛK и $CT \times AK$ (P = 0.95) и отсутствием таковой между другими группами помесных ярок и архаромериносами.

Расположение волосяных фолликулов в коже овец групповое и соответствует описанию Х. Б. Картера (1957), В. И. Карповой (1962) и др. Каждая группа волосяных фолликулов состоит из трех первичных и различного числа вторичных фолликулов.

Железистая система кожи родительских групп характеризуется следующими показателями. Секреторный отдел потовых желез у барана АК менее длинный (158.3 микропа), но более широкий (60 микрона), чем у баранов СТ (181,8 и 43,6 микро-

на) и CT × AK (279,7 и 48,7 микрона).

Наибольшая ширина долек сальных желез отмечена у барана АК (98.3 микропа), песколько меньшая — v CT × AK (88.2 микропа) и наименьшая — у СТ (63.4 микропа), а длина лучше развита у барана СТ × АК (309,9 микрона), слабее — у АК (231.8 микропа) и меньше всех у СТ (132,7 микропа).

Длина и ширина секреторных отделов потовых желез лучше развиты у овцематок АК (216,1 и 46,3 микрона), чем у СТХ ×AK (190,8 и 41,3 микрона), а соответствующие промеры сальных желез у последних (152 и 73,2 микрона) несколько выше, чем у маток АК (127,2 и 66,2 микрона).

В возрасте 1 года потовые железы по баранчикам лучше развиты у помесного потомства, чем у архаромериносов. Длина секреторного отдела потовых желез у баранчиков АК равна 197.8 ± 14.6 микрона, ширина — 52.2 ± 3.3 микрона, а у животных $CT \times AK$ они составляют соответственно 219.2 ± 28.7 ч 60.9 ± 2.2 микрона. У баранчиков $CT\times AK\times AK$ и $AK\times CT\times$ ×AK показатели потовых желез промежуточные или близки к СТ Х АК. Аналогичный характер развития имеют и сальные железы баранчиков, промеры которых у помесей (преимущественно по длине) выше, чем у АК.

По яркам потовые железы лучше развиты у АК, чем у помессії, а из послединх сильнее выражены у ярок CT×AK. Ярки АК имсют данну потовых желез 244 ± 16.1 , ширину - $59,2\pm7,6$ микрона, а у ярок СТ $\times \Delta K$ опи равны $221,5\pm17.6$ и

 60.4 ± 10.9 микронам.

Сальные железы по длине долек несколько лучше выражены у ярок $CT \times AK$ (132 \pm 12 микропа), меньше всех у $CT \times AK \times AK$ (120,6 \pm 6,7 микропа), а у ярок AK (129,4 \pm ±11,9 микрона), такне же, как у АК×СТ×АК; ширина долек у ярок AK и $CT \times AK$ (59,6 \pm 1,5 и 58,7 \pm 1,7 микрона) почти одинаковая, а у $CT \times AK \times AK$ и $AK \times CT \times AK$ несколько больше. Следует отметить, что в некоторых случаях наблюдается связь между степенью развития сальных желез и содержанием шерстного жира.

Таким образом, из изложенного видно, что по многим показателям гистоструктуры кожи помеси отличаются от арха-

ромериносов.

Баранчики СТ \times АК превосходят архаромериносов по толицине кожи, развитию промежуточного слоя и железистой системы, глубине залегания корней волос, густоте (на 35%), количеству вторичных волос на один первичный, числу корней волос в группе.

Большинство этих признаков наследуются ими со стороны отцовской (ставропольской) породы, что согласуется и с указаниями В. И. Сарры-Ефимовой (1938), Н. А. Диомидовой

(1949) и др.

Барапчики $CT \times AK \times AK$ имеют меньшую толщину кожи, чем AK; по развитию промежуточного и сетчатого слоев, глубине залегания корней волос они приближаются к барапчикам $CT \times AK$. а по толщине эпидермиса, густоте корней волос и числу корней волос в группе уклоняются в сторону архаромериносов; железистая система кожи у них развита слабее, чем у $CT \times AK$, но лучше, чем у AK.

Баранчики $AK \times CT \times AK$ по толщине кожи, промежуточного и сетчатого слоев, глубине залегания корней волос, густоте корней волос ближе стоят к AK, а по развитию желез и числу корней волос в группе к $CT \times AK$.

Ярки $CT \times AK$ по сравнению с AK имеют большую толщину кожи, лучшую густоту волос (на $28,4\,\%$), более высокое число корней волос в группе и лучшее отношение вторичных волос на один первичный. Кроме того, у них более развиты сетчатый слой, длина сальных и ширина потовых желез.

Ярки $CT \times AK \times AK$ и $AK \times CT \times AK$ по толщине кожи и ее слоев, глубине залегания корней волос сходны друг с другом и по показателям приближаются к яркам I поколения. Однако густота волос на 1 мм² кожи и число корней волос в группе лучше выражены у ярок $CT \times AK \times AK$, чем у $AK \times CT \times AK$. По этим признакам $CT \times AK \times AK$ ближе стоят к животным I поколения, а $AK \times CT \times AK$ уклоняются в сторону архаромериносов.

О характере взаимозависимости признаков шерсти и кожи можно судить по данным коэффициентов корреляции между настригом шерсти и следующими показателями: ее длиной, густотой, числом корней волос в группе, количеством вторичных волос на один первичный, толщиной промежуточного слоя кожи и между последним и длиной шерсти, которые соответственно равны у баранчиков $AK + 0.23 \pm 0.3$; $+ 0.46 \pm 0.44$; $+ 0.6 \pm 0.4$; $+ 0.69 \pm 0.36$; $+ 0.12 \pm 0.48$; $+ 0.53 \pm 0.48$; у $CT \times AK + 0.58 \pm 0.3$; $+ 0.16 \pm 0.98$; $+ 0.5 \pm 0.86$; $+ 0.61 \pm 0.79$; + 0.61 =

 ± 0.79 ; $+0.56 \pm 0.83$; y spok CT \times AK $+0.28 \pm 0.33$; $+0.59 \pm 0.46$; $+0.67 \pm 0.42$; -0.12 ± 0.56 ; $+0.72 \pm 0.4$; $+0.85 \pm 0.3$.

Следовательно, получены довольно значительные и в большинстве случаев положительные коэффициенты корреляции, что говорит о паличии определенной связи между указанными

признаками шерсти и кожи.

Из всего изложенного вытекает, что при скрещивании овец архаромеринос с баранами ставропольской породы архаромериносы отличаются большей константностью в передаче потомству веса и размера тела, а ставропольская порода — качества шерсти и гистоструктуры кожи.

Выводы

1. При вводном скрещивании маток архаромеринос с баранами ставропольской породы баранчики $CT \times AK$ наследуют тип телосложения и живой вес со стороны отца, а ярки — со стороны матери (первые отстают от архаромериносов в годичном возрасте по живому весу на 5,6%, а вторые — на 1,9%).

Помеси II поколения с $^{1}/_{4}$ крови ставропольской породы $(CT \times AK \times AK + AK \times CT \times AK)$ по промерам и живому весу

приближаются к архаромериносам.

2. Овцы CT×AK и CT×AK×AK по ряду гемонитерьерных особенностей (содержанию в крови гемоглобина, эритроцитов, количеству общего белка, а также альбуминов и глобулинов в сыворотке крови) не уступают архаромериносам, что говорит о довольно высокой окислительной способности крови помесных животных.

3. Помеси по настригам шерсти превосходят архаромериносов: баранчики $CT \times AK$ — на 21,9%, ярочки — на 20,5%, а аналогичные группы $CT \times AK \times AK$ и $AK \times CT \times AK$ — соот-

ветственно на 4,4 и 17,2; 6,2 и 5,3%.

4. Животные I поколения $CT \times AK$ по комплексу физических свойств шерсти (уравненности по тонине, длине, крепости, содержанию шерстного жира, цвету жиропота, выходу чистого волокна, извитости и блеску) обладают лучшими показателями, чем архаромериносы, и наследуют эти качества со стороны ставропольской породы; из II поколения овцы $CT \times AK \times AK$ по этим признакам ближе стоят к полукровным животным, а овцы $AK \times CT \times AK$ уклоняются в сторону архаромериносов.

5. Показатели густоты первичных и вторичных волосяных фолликулов на 1 мм² кожи, отношения вторичных волос из один первичный и числа корней волос в группе лучше у помесей I поколения CT×AK, чем у архаромериносов, а животные CT×AK×AK и AK×CT×AK занимают по этим признакам промежуточное положение между CT×AK и архаромериноса-

ми.

Обычные способы определения густоты шерсти на гистологических срезах кожи без учета ее сократимости дают завышенные данные по густоте корней волос. Поэтому для установления фактической густоты шерсти с учетом сократимости кожи целесообразно пользоваться методикой, разработанной в Институте экспериментальной биологии АН КазССР, по которой пробы кожи берутся путем биопсии специальным пробойником с режущей поверхностью 1 см².

6. Помесные баранчики (кроме $CT \times AK \times AK$) и особенно ярки имеют несколько большую толщину кожи, чем архаромериносы. Баранчики $CT \times AK$ отличаются от архаромериносов более тонким эпидермисом и сетчатым слоем, хорошо развитым промежуточным слоем кожи и большей глубиной залегания корней волос в коже; по развитию этих признаков (кроме эпидермиса) баранчики $CT \times AK \times AK$ приближаются к 1 по-

колению, а AK×CT×AK — к архаромериносам.

У помесных ярок I и II поколений также тоньше эпидермис и в абсолютном выражении более развиты промежуточный, сетчатый слои кожи и больше глубина залегания корпей волос, чем у архаромериносов, а в относительном выражении (в процентах от толщины кожи) эти показатели у них почти одинаковые.

Потовые и сальные железы в коже лучше выражены у помесных баранчиков, а у помесных ярок они почти такие же,

как у архаромериносов.

7. Настриги шерсти коррелируют, кроме длины и густоты шерсти, с развитием таких признаков кожи, как промежуточный слой, число корней волос в группе и отношение вторичных волос к первичным. Поэтому они также должны быть положены в основу селекционной работы с овцами в целях по-

вышения их шерстной продуктивности.

На основании изложенного выше следует заключить, что вводное скрещивание маток архаромеринос с баранами ставропольской породы положительно влияет на шерстную продуктивность и качества шерсти помесного потомства за счет лучшего развития у помесей гистоструктуры кожи, и оно может быть применено методом осторожного прилития крови, на небольшой части более крупных маток породы казахский архаромеринос, путем полбора к ним менее складчатых баранов ставропольской породы.

МАТЕРИАЛЫ ДИССЕРТАЦИИ ИЗЛОЖЕНЫ В СЛЕДУЮЩИХ СТАТЬЯХ:

- 1. Вводное скрещивание овец казахский архаромеринос с баранами ставропольской породы. Сборник рефератов научных работ. Казахский Государственный педагогический институт им. Абая, вып. 11, 1962, Алма-Ата,
- 2. Рост и развитие овец породы казахский архаромеринос и их помесей. Сборник рефератов научных работ, Казахский Государственный правогочический институт им. Абая, вып. 12, 1964, Алма-Ата.
- 3. Некоторые данные о вводном скрещивании маток архаромеринос с баранами ставропольской породы (в соавторстве с А. И. Исенжуловым). Труды Института экспериментальной биологии АН КазССР, том Н, 1965, Алма-Ата.
- 4. Наследование гистоструктуры кожи при скрещивании овец архаромеринос с баранами ставропольской породы. «Вестник сельскохозяйственной науки», 1968, Алма-Ата (в печати).

Материалы диссертации доложены:

- 1) на XVI—XIX и XXI научных конференциях профессорско-преподавательского состава Казахского Государственного педагогического института им. Абая (Алма-Ата, 1962, 1963, 1964, 1965, 1967 гг.).
- 2) на научно-производственной конференции по горному тонкорупному овцеводству юго-восточного Казахстана (Кегенский район Алма-Атинской области, 1965).