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Abstract. The paper is devoted to the problem of optimizing the process of steam stimulation on the oil reservoir by controlling
the steam pressure on the injection well to achieve preassigned temperature distribution along the reservoir at a given time of
development. The relevance of the study of this problem is related to the need to improve methods of heavy oil development,
the proportion of which exceeds the reserves of light oils, and it tends to grow. As a mathematical model of oil displacement by
steam, three-phase non-isothermal flow equations is considered. The problem of optimal control is formulated, an algorithm for the
numerical solution is proposed. As a reference regime, temperature distribution corresponding to the constant pressure of injected
steam is accepted. The solution of the optimization problem shows that choosing the steam pressure on the injection well, one can
improve the efficiency of steam-stimulation and reduce the pressure of the injected steam.

INTRODUCTION

Currently, research related to heavy oil extraction is among the most relevant to the oil industry. Technology of oil
displacement by steam is widely used as a method for the production of heavy oil reserves, in which increase of oil
recovery is achieved by warming up the formation, decreasing the viscosity of the oil, increasing its mobility and
others. However, due to the relatively high cost of this technology, research aimed at improving its efficiency is of
great practical importance.

We consider a problem of optimizing the process of oil displacement by steam by controlling the steam pressure
on the injection well to achieve a predefined temperature distribution along the reservoir at a specified time of devel-
opment. This problem was studied, for example, in [1] where the technique of solving the optimization problem is
based on the adaptive penalty method [2]. To minimize the extended ε-functional, resulting from the application of
the penalty method, the gradient descent method was used in [1] and the conjugate set of equations, obtained from the
necessary optimality conditions, is numerically solved. The main difficulty of this approach is the derivation of the
conjugate problem due to the complexity of the extended ε-functional.

In this paper, we propose a method of solving the considered optimization problem. As a mathematical model
of the process of oil displacement by steam, three-phase non-isothermal flow equations, consisting of mass balance
equation, Darcy’s law and energy equation, is considered [3, 4, 5]. We use so called global formulation of the three-
phase non-isothermal flow problem [6, 7] with some simplifications with respect to the physical data. Results of
computational experiments are presented for a test problem.

FORMULATION OF THE PROBLEM

We consider a one dimensional problem of oil displacement by steam on the segment Ω = [0, 1], on the left border of
which an injection well is placed. We assume that the reservoir is homogeneous and isotropic; capillary, gravitational
forces and phase transitions between the phases of water and steam are neglected, water and oil are considered to be
incompressible. It is required to approximate the temperature distribution of the reservoir to the reference temperature
distribution ϕ (x) at time t = t1 by controlling the injection pressure of steam p (0, t) = p∗ (u (t)). The function
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p∗ = p∗ (u) represents the dependence of saturated vapor pressure on temperature which satisfies the inequality

|p∗ (u (t))| < ν1 |u (t)| , ν1 > 0. (1)

In other words, it is required to minimize a functional

J (u) =

∫ 1

0
|T (x, t1, u) − ϕ (x)|2 dx (2)

provided that the temperature T = T (x, t1, u) is determined from the solution of the problem

a1Tt − kT Txx = 0, (3)

a2 pt − a3 pxx = −c0Txx, (4)

φραsα,t − kλαpxx = 0, α = w, o (5)

with initial and boundary conditions:

p (x, 0) = p0, T (x, 0) = T0, sα (x, 0) = sα0, (6)

p (0, t) = p∗ (u (t)) , px (1, t) = 0, T (0, t) = u (t) , Tx (1, t) = 0, (7)

sα (0, t) = sα1, sα,x (1, t) = 0, α = w, o.

The quantities ai, kT , ci, λi are considered to be constant. The control u belongs to the set U consisting of
functions u (t) ∈ H ≡ L2 [0, t1] such that

M0 ≤ u (t) ≤ M1 a.e. on [0, t1] .

The scalar product and norm in H is determined in the form

〈u1, u2〉H =

∫ t1

0
u1 (t) u2 (t) dt, ‖u‖2H = 〈u, u〉H .

For brevity, we introduce the notation

v (x, t) = v (x, t, u) = (p (x, t, u) , T (x, t, u) , sw (x, t, u) , so (x, t, u)) .

The solution v of the boundary value problem (3)-(7) is uniquely determined for each fixed control u.

METHOD OF SOLVING THE PROBLEM

Let us show that the functional (2) is differentiable. To this end, we take arbitrary controls u, u + ũ. Let v (x, t, u)
and v (x, t, u + ũ) be solutions of the boundary value problems (3)-(7) corresponding to these controls. Let us denote
ṽ =

(
p̃, T̃ , s̃w, s̃o

)
= v (x, t, u + ũ) − v (x, t, u) .

It follows from (3)-(7) that the vector
(
p̃, T̃ , s̃w, s̃o

)
is a generalized solution of the problem

a1T̃t − kT T̃xx = 0, (8)

a2 p̃t − a3 p̃xx = −b0T̃xx, (9)

φρα s̃α,t − kλα p̃xx = 0, α = w, o (10)

with initial and boundary conditions:

p̃ (x, 0) = 0, T̃ (x, 0) = 0, s̃α (x, 0) = 0, (11)

p̃ (0, t) = p∗ (ũ (t)) , p̃x (1, t) = 0, T̃ (0, t) = ũ (t) , T̃x (1, t) = 0, (12)
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s̃α (0, t) = 0,
∂s̃α
∂x

(1, t) = 0.

Then the increment of the functional (2) can be expressed as follows

J̃ = J (u + ũ) − J (u) =

∫ 1

0
2
(
T (x, t1, u) − ϕ (x)

)
T̃ (x, t1) dx +

∫ 1

0

∣∣∣T̃ (x, t1)
∣∣∣2 dx. (13)

Note that the first term on the right side of (13) can be expressed in the form [8]∫ 1

0
2
(
T (x, t1, u) − ϕ (x)

)
T̃ (x, t1) dx = kT

∫ t1

0
θx (0, t) ũ (t) dt, (14)

where θ (x, t, u) = θ (x, t) is determined from the generalized solution of the auxiliary problem

a1θt + kT θxx − c0πxx = 0, (15)

a2πt + a3πxx +
∑
α=w,o

kλασα,xx = 0, (16)

φρασα,t = 0, α = w, o (17)

with final and boundary conditions

θ (x, t1) =
2
a1

(T (x, t1) − ϕ (x)) , π (x, t1) = 0, σα (x, t1) = 0, (18)

θ (0, t) = 0, π (0, t) = 0, σα (0, t) = 0,
θx (1, t) = 0, πx (1, t) = 0, σα,x (1, t) = 0. (19)

Substituting (14) into (13), we obtain:

J̃ = kT

∫ t1

0
θx (0, t) ũ (t) dt +

∫ 1

0

∣∣∣T̃ (x, t1)
∣∣∣2 dx. (20)

Let us show that ∫ 1

0

∣∣∣T̃ (x, t1)
∣∣∣2 dx ≤ C1

∫ t1

0
|ũ (t)|2 dt, (21)

where C1 > 0 does not depend on choice of u ∈ H and ũ ∈ H. To derive this estimate, we multiply the equation (8) by
T̃ (x, t) and integrate it over the rectangle Q ≡ [0, 1] × [0, t1]:

0 =

∫ t1

0

∫ 1

0

(
a1T̃t − kT T̃xx

)
T̃ dx dt =

=
a1

2

∫ 1

0

∣∣∣T̃ (x, t1)
∣∣∣2 dx + kT

∫ t1

0
T̃x (0, t) ũ (t) dt + kT

∫ t1

0

∫ 1

0

∣∣∣T̃x

∣∣∣2 dx dt,

from which we have

a1

2

∫ 1

0

∣∣∣T̃ (x, t1)
∣∣∣2 dx + kT

∫ t1

0
T̃x (0, t) ũ (t) dt + kT

∫ t1

0

∫ 1

0

∣∣∣T̃x

∣∣∣2 dx dt = 0.

Using ε-inequality ab ≤ εa2

2 + b2

2ε valid for any real a, b, ε > 0, we obtain:

a1

2

∫ 1

0

∣∣∣T̃ (x, t1)
∣∣∣2 dx + kT

∫ t1

0

∫ 1

0

∣∣∣T̃x (x, t)
∣∣∣2 dx dt ≤

≤
kTε2

2

∫ t1

0

∣∣∣T̃x (0, t)
∣∣∣2 dt +

kT

2ε2

∫ t1

0
|ũ (t)|2 dt. (22)
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Similarly, multiplying equation (9) by p̃ (x, t) and integrating over the rectangle Q, using the boundary conditions
and inequality (1), after obvious transformations, we obtain:

a2

2

∫ 1

0
|p̃ (x, t1)|2 dx + a3

∫ t1

0

∫ 1

0
| p̃x|

2 dx dt ≤
a3ν1

2ε3

∫ t1

0
|ũ (t)|2 dt+

+
b0ε4ν1

2

∫ t1

0
|ũ (t)|2 dt +

ε5

2

∫ t1

0

∫ 1

0

∣∣∣T̃x

∣∣∣2 dx dt +
1

2ε5

∫ t1

0

∫ 1

0
| p̃x|

2 dx dt. (23)

Summing inequalities (22) and (23) and choosing ε5 such that

kT −
ε5

2
> 0, a3 −

1
2ε5

> 0,

and denoting

C1 =
1
a1

(
kT

ε2
+ b0ε4ν1

)
,

we obtain the inequality

a1

2

∫ 1

0

∣∣∣T̃ (x, t1)
∣∣∣2 dx +

a2

2

∫ 1

0
|p̃ (x, t1)|2 dx +

(
kT −

ε5

2

) ∫ t1

0

∫ 1

0

∣∣∣T̃x (x, t)
∣∣∣2 dx dt+

+

(
a3 −

1
2ε5

) ∫ t1

0

∫ 1

0
| p̃x|

2 dx dt ≤
2C1

a1

∫ t1

0
|ũ (t)|2 dt, (24)

which implies the desired estimate (21).
It follows from equation (20) for the increment of the function and estimate (24) that the functional (2) is differ-

entiable and its gradient is as follows
J′ (u) = kT θx (0, t, u) . (25)

We use the gradient projection method for the numerical solution of the problem (2)-(7) which consists in con-
structing a sequence {uk} according to the rule

uk+1 = PU
(
uk − αk J′ (uk)

)
, k = 0, 1, ..., αk > 0

where PU (u) is the projection of the point u on the set U ⊂ H, J (u) ∈ C1 (U). For the problem (2)-(7), it reduces to
constructing a sequence by formulas [8]

uk+1 (t) =


uk (t) − αkkT θx (0, t, uk) , M0 ≤ uk (t) − αkkT θx (0, t, uk) ≤ M1,

M0, uk (t) − αkkT θ (0, t, uk) < M0,
M1, uk (t) − αkkT θ (0, t, uk) > M1,

(26)

where αk is selected from the condition

fk (αk) = inf
α≥0

fk(α), fk(α) = J(PU(uk − αJ′(uk))).

The algorithm for solving the problem (2)-(7) is defined as follows. Let us set an initial control u = u0. Further,
direct problem (3)-(7) and conjugate problem (15)-(19) are solved at each iteration. Using the solution of the latter, the
gradient of the functional J by (25) is calculated. Finally, the control is determined using (26). The iterative process
is performed until the stopping criterion is met.

For the numerical implementation of equations (3)-(5) and (15)-(17), the finite difference method is used. The
equations are solved on a uniform grid Ωh =

{
xi = i∆x : i = 0, N, x0 = 0, xN = 1

}
.
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FIGURE 1. Reference temperature distribution

FIGURE 2. Optimal control

FIGURE 3. Reference temperature (solid line) and a temperature obtained by controlled pressure (dashed line)

NUMERICAL RESULTS AND DISCUSSION

In order to verify the correctness of the algorithm, a test problem was solved. Computational experiments are per-
formed for different values of development time t1. As the reference temperature, we selected a temperature distribu-
tion corresponding to the solution of the problem (3)-(7) with constant pressure of injected steam at time t1 = 650τ
shown in Fig. 1. Parameter t1 in the functional (2) is selected to be in range from t1 = 450τ to t1 = 600τ.

In Fig. 2 the control p∗ (u) is shown for t1 = 450τ. Fig. 3 compares the reference temperature with a temperature
distribution obtained by controlling the pressure on the 14th iteration. Analyzing the results, one can conclude that to
approximate the temperature distribution to the reference temperature, shown in Figure 1, steam injection should be
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initiated with a certain initial pressure p1, followed by its decrease. This result agrees with the results obtained in [1].
By varying the value of the parameter t1, it has been found that reduction of the development period increases the

pressure of injected steam on the requirement of a minimum deviation from the reference temperature. Computational
experiments show that by controlling the steam pressure in the injection well, the efficiency of the process can be in-
creased by reducing the overall steam consumption. Thus, the results obtained can be used to predict the effectiveness
of the operational methods of oil field development. The proposed approach for the numerical solution of the optimal
control problem can be applied to similar physical problems.
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