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Abstract. The paper studies a model of the gaslift process where the motion in a gas-lift well is described by partial differential
equations. The system describing the studied process consists of equations of motion, continuity, equations of thermodynamic
state, and hydraulic resistance. A two-layer finite-difference Lax-Vendroff scheme is constructed for the numerical solution of the
problem. The stability of the difference scheme for the model problem is investigated using the method of a priori estimates, the
order of approximation is investigated, the algorithm for numerical implementation of the gaslift process model is given, and the
graphs are presented. The development and investigation of difference schemes for the numerical solution of systems of equations
of gas dynamics makes it possible to obtain simultaneously exact and monotonic solutions.

INTRODUCTION

We consider the initial-boundary value problem describing the motion of a liquid in gaslift wells

ρ (x, t)
(
∂−→v
∂t
+ −→v · ∇−→v

)
+ ∇P(ρ) = − λc

2dg
ρ−→v |−→v | + −→f , (1)

∂ρ

∂t
+ ∇ (ρ�v) = 0, (2)

P = P (ρ) , (3)

ρ|t=0 = ρ0 (x) , −→v |t=0 =
−→v0 (x) , −→v |s = 0, (4)

in which the unknown functions are the density ρ(x, t) and the velocity −→v (x, t) = (v1(x, t), ..., vn(x, t)) of a viscous
compressible fluid filling the bounded domain Ω ⊂ Rn with the boundary S . The dimension n is equal to 1, 2 or 3.
The velocity −→v0(x) and the density ρ0(x) > 0 are given at the initial time. The coefficient of hydraulic resistance λc, the
hydraulic channel diameter dg are some positive constants, and the pressure P(ρ) is a function of a positive argument
with the first Lipschitz continuous derivative. The density ρ and the velocity vector −→v are written in the Euler variables
(t, x) ∈ Q = [0, T ] ∪Ω.

The system of equations describing the state of a viscous, compressible fluid, in contrast to the equations (1)
also contains the viscous terms on the right-hand side. The solvability of the Cauchy problem on a small time interval
for this system was studied in [1] and [2]. A theorem on the local solvability of the initial-boundary value problem
for equations of a viscous, compressible fluid was proved in [3]. A local existence theorem for the solution of a
one-dimensional initial-boundary value problem for the equations of motion of a viscous perfect polytropic gas in
Lagrangian mass coordinates was proved in [4]. In [4] the technique of research of initial-boundary value problems ”in
the whole” on the time for the system of equations describing the one-dimensional flow of a viscous heat-conducting
gas is described.

Various numerical methods for solving the systems of equations for the dynamics of a viscous compressible gas
are currently used [5, 6, 7, 8, 9, 10, 11]. However, there is no mathematical proof of their stability and convergence
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to the solution of the differential problem. This is due to the nonlinearity of the equations, and also to the non-
evolutionary nature of the system under consideration. For some problems of the dynamics of a viscous barotropic
gas, an estimate of the error of difference schemes was obtained in the work of B. G. Kuznetsov and Sh. Smagulov
[12, 13]. A new difference scheme for the equations of a one-dimensional viscous heat-conducting gas is proposed and
investigated in [14]. Studies of nonlinear difference schemes in the neighborhood of the known solution of specific
problems of mathematical physics were carried out in [15, 16].

In [17], the characteristics of various difference schemes for the Euler equations are compared for solutions of
a number of model problems of gas dynamics and gas-dynamic processes. A new difference scheme for the nonsta-
tionary motion of a viscous barotropic gas in Euler variables is proposed in [18]. Positivity of the density function
is ensured by the fact that not the values of the density function themselves are sought, but the natural logarithms of
these quantities.

The development and investigation of difference schemes for the numerical solution of systems of equations of
gas dynamics makes it possible to obtain simultaneously exact and monotonic solutions.

In the present paper, a two-layer Lax-Vendroff (predictor-corrector type) difference scheme is constructed for
solving the problem (1)-(4). A priori estimates for the difference problem are obtained by the method of energy
inequalities.

FORMULATION OF THE PROBLEM

Consider first a two-dimensional version of the algorithm:

∂ρ

∂t
+
∂ρu
∂z
= 0, (5)

∂ρu
∂t
+
∂ρu2

∂z
+
∂p
∂z
= − λc

2dg
ρu|u| + f , (6)

ρ (z, 0) = ρ0 (z) , v (z, 0) = v0 (z) , (7)

v (0, t) = v (0, 1) = 0.

The corresponding difference scheme (5)-(7) is as follows:
- predictor:

ρn+1/2
i+1/2

− 0.5
(
ρn

i+1
+ ρn

i

)
τ/2

+
ρn

i+1
un

i+1
− ρn

i un
i

h
= 0, (8)

ρn+1/2
i+1/2

un+1/2
i+1/2

− 0.5
(
ρn

i+1
un

i+1
+ ρn

i un
i

)
τ/2

+
ρn

i+1

(
un

i+1

)2 − ρn
i

(
un

i

)2
h

+

+
pn

i+1
− pn

i

h
= − λc

2dg
ρn

i un
i |un

i | + f n
i ; (9)

- corrector
ρn

i+1
− ρn

i

τ
+
ρn+1/2

i+1/2
un+1/2

i+1/2
− ρn+1/2

i−1/2
un+1/2

i−1/2

h
= 0, (10)

ρn+1
i un+1

i − ρn
i un

i

τ
+
ρn+1/2

i+1/2

(
un+1/2

i+1/2

)2 − ρn+1/2
i−1/2

(
un+1/2

i−1/2

)2
h

+

+
pn+1/2

i+1/2
− pn+1/2

i−1/2

h
= − λc

2dg
ρn+1/2

i+1/2
un+1/2

i |un+1/2
i + f n+1/2

i , (11)

ρ0
i = ρ0 (zi) , v0

i = v0 (zi) , i = 1, 2, ..., M − 1, (12)

vn
0 = 0, vn

M = 0, n = 0, 1, ..., N.

Excluding the intermediate values of ρn+1/2
i+1/2

and un+1/2
i+1/2

from (8), (9), (10), we have

ρn
t,i +
(
ρn

i un
i
)

x̊ −
τ

2

(
ρn

i
(
un

i
)2)

x̄x
− τh

2
pn

x̄x,i −
τλc

2dg

(
ρn

i un
i |un

i |
)

x̊ + τ f n
x̊,i = 0. (13)
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STUDY OF STABILITY OF THE DIFFERENCE SCHEME

We first give a procedure for applying energy inequalities for the model transport equation when u (x, t) = a = const:

yn
t,i + ayn

x̊,i −
a2τ

2
yn

x̄x,i = 0, (14)

yn
0 = yn

M = 0, y0
i = ρ0 (xi) .

Taking into account that yn
x̊,i = 0.5

(
yn

x̄,i + yn
x,i

)
, rewrite the difference relation (14) in the form

yn
t,i +

a
2

(
yn

x̄,i + yn
x,i

)
− a2τ

2
yn

x̄x,i = 0. (15)

Multiply (15) taken on the n-th layer by 2τhyn+1
i . The resulting equality is summed over i from 1 to M − 1:

2τ

M−1∑
i=1

yn
t,iy

n+1
i h + aτ

M−1∑
i=1

yn
x̄,iy

n+1
i h + aτ

M−1∑
i=1

yn
x,iy

n+1
i h − a2τ2

M−1∑
i=1

yn
x̄x,iy

n+1
i h = 0. (16)

Given that

2τyn
t,iy

n+1
i =

(
yn+1

i

)2 − (yn
i
)2
+ τ2
(
yn

t,i

)2
(17)

and applying the difference derivative formulas, we have from (16):

||yn+1||2 − ||yn||2 + τ2||yn
t ||2 − aτ

M−1∑
i=0

yn+1
x,i yn

i h + yn+1
M yn

M−1 − yn
0yn+1

0 − aτ
M∑

i=1

yn+1
x̄,i yn

i h+

+yn+1
M yn

M − yn
0yn+1

1 − a2τ2
M∑

i=1

yn+1
x̄,i yn

x̄,ih − yn+1
M yn

x̄,M − yn
x,0yn+1

0 = 0. (18)

Taking into account boundary conditions (14), we obtain

||yn+1||2 − ||yn||2 + τ2||yn
t ||2 + a2τ2

N∑
i=1

(
yn

x̄,i

)2
h =

= −a2τ3
N∑

i=1

yn
x̄,iy

n
x̄,th + aτ2

⎛⎜⎜⎜⎜⎜⎜⎝
M−1∑
i=0

yn
xt,iy

n
i h +

M∑
i=0

yn
xty

n
i h

⎞⎟⎟⎟⎟⎟⎟⎠ . (19)

Here the following relations are used:

[yn, yn
x) + (yn, yn

x̄] = (yn, yn
x) + (yn, yn

x̄) = (yn, yn
x) + yn

M , yn
M−1 − yn

0, yn
0 − [yn

x, yn) =

= (yn, yn
x) − [yn

x, yn) = (yn, yn
x) − (yn, yn

x) = 0.

Estimate the terms on the right-hand side of (19) through the terms of the left-hand side and known quantities as
follows:

jn1 =

∣∣∣∣∣∣∣a2τ3
N∑

i=1

yn
x̄,iy

n
x̄,th

∣∣∣∣∣∣∣ = a2τ3

⎛⎜⎜⎜⎜⎝ε2
1||yn

x̄]|2 + 1

4ε2
1

||yn
x̄,t]|2
⎞⎟⎟⎟⎟⎠ .

Next, using the well-known inequality [6]

||yn
x̄t]|2 ≤

4

h2
||yn

t ||2,
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we obtain

jn1 ≤ a2τ3ε2
1||yn

x̄]|2 + a2τ2

ε2
1
h2
||yn

t ||2. (20)

We now estimate the second term on the right-hand side of (19) using the inequality [6]:

h2

4
|[yx||2 ≤ ||y||2 ≤ l2

8
|[yx||2

and ε-inequality:

jn2 = aτ2
∣∣∣[yn

xt, yn) + (yn
x̄t, yn]

∣∣∣ ≤ aτ2 4

h2
||yn

t || · ||yn|| + aτ
4

h2
||yn

t || · ||yn|| = ∣∣∣[yn
xt, yn) + (yn

x̄t, yn]
∣∣∣

=
4aτ2

h
||yn

t || · ||yn|| ≤ aτ2l2

2h2
||yn

t || · ||yn
x̄|| ≤

al2

2h2

((
τ

3
2 ||yn

t ||
)
·
(
τ

1
2 ||yn

x̄]|
))
≤ al2τε2

2

2h2
||yn

x̄]|2 + al2τ3

8h2ε2
2

||yn
t ||2. (21)

From (19), (20), (21) we have

||yn+1||2 − ||yn||2 + τ2

⎛⎜⎜⎜⎜⎝1 − a2τ

h2ε2
1

− al2τ
8h2ε2

2

⎞⎟⎟⎟⎟⎠ ||yn
t ||2 +

⎛⎜⎜⎜⎜⎝a2τ2 − a2τ3ε2
1 −

al2τε2
2

2h2

⎞⎟⎟⎟⎟⎠ ||yn
x̄]|2 ≤ 0. (22)

Choosing

ε2
1 =

2a
h
, ε2

2 =
l2

4h
,

we obtain from (22):

||yn+1||2 − ||yn||2 + τ2
(
1 − aτ

h

)
||yn

t ||2 +
(
a2τ2 − 2a3τ3

h
− al4τ

8h3

)
||yn

x̄]|2 ≤ 0. (23)

Imposing the condition on h, τ and a in the form

1 − aτ
h
> 0, (24)

we obtain the inequality

||yn+1||2 − ||yn||2 + aτ
(
aτ − 2a2τ2

h
− l4

8h3

)
||yn

x̄]|2 ≤ 0,

which allows to estimate ||yn|| and ||yn
x̄]| under the condition

aτ − 2a2τ2

h
− l4

8h3
≥ 0. (25)

Indeed, if the coefficient for ||yn
x̄]|2 is nonnegative, therefore

||yn+1|| ≤ ||yn|| ≤ ... ≤ ||y0||.
Let us write the equation (6) in a non-divergent form taking into account the continuity equation (5) and the

density positivity condition ρ:
∂u
∂t
+

1

2

∂u2

∂x
+
∂g
∂x
= − λc

2d
|u| · |u| + f , (26)

where g = ln ρ.
Then the Lax-Vendroff scheme for the equation (26) has the form

un+ 1
2

i+ 1
2

− 0.5
(
un

i+1
+ un

i

)
τ
2

+
1

2

[
un

i+1

un
i+1
− un

i

h
+ un

i

un
i − un

i−1

h

]
+
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+
gn

i+1
− gn

i

h
= − λc

2d
|un

i+ 1
2

| · |un
i+ 1

2

| + f n
i+ 1

2

, (27)

un+1
i − un

i

τ
+

1

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣u
n+ 1

2

i+ 1
2

un+ 1
2

i+ 1
2

− un+ 1
2

i− 1
2

h
+ un+ 1

2

i− 1
2

un+ 1
2

i− 1
2

− un+ 1
2

i− 3
2

h

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦+

+

gn+ 1
2

i+ 1
2

− gn+ 1
2

i− 1
2

h
= − λc

2d
|un+ 1

2

i | · |un+ 1
2

i | + f n+ 1
2

i . (28)

Multiply the equation (27) by τun+ 1
2

i+ 1
2

h and sum along the inner nodes of the grid:

2τ

M−1∑
i=1

(
un+ 1

2

i+ 1
2

)2
h − 2τ

M−1∑
i=1

un+ 1
2

i+ 1
2

un+ 1
2

i+ 1
2

h +
τ

2

M−1∑
i=1

un
i+1un

x,iu
n+ 1

2

i+ 1
2

h+

+
τ

2

M−1∑
i=1

un
i un

x̄,iu
n+ 1

2

i+ 1
2

h + τ
M−1∑
i=1

gn
x,iu

n+ 1
2

i+ 1
2

h = − λc

2d

M−1∑
i=1

|un
i+ 1

2

|un+ 1
2

i+ 1
2

h+

+τ

M−1∑
i=1

f n+ 1
2

i un+ 1
2

i+ 1
2

h. (29)

Estimate scalar products in (29). Let us use the Cauchy inequality and the inequalities from [17] for the term
generated by the nonlinear terms:

| j1| ≡ τ
2

∣∣∣M−1∑
i=1

(
un

i+1un
x,i + un

i un
x̄,i

) (
ui+ 1

2

i+ 1
2

− un
n+ 1

2

)∣∣∣ ≤

≤ τ
h
|||un|2|| ||un+ 1

2 − un|| ≤ 2τ

h
||un|| 12 ||un

x||
1
2 ||un+ 1

2 − un|| ≤

≤ ε1τ

h
||un+ 1

2 − un||2 + 2τ

ε1h2
||un||2,

similarly,

| j2| ≡ τ
2

∣∣∣M−1∑
i=1

(
un

i+1un
x,i + un

i un
x̄,i

)
un

n+ 1
2

∣∣∣ ≤ 2τ

h
||un|| 12 ||un

x||
1
2 ||un|| ≤ τ

h

(
1 +

2

h

)
||un||2.

Using the difference analogue of the embedding theorem and ε-inequality to the term j3 ≡
τλc
2d
∑M−1

i=1 un
i+ 1

2

|un
i+ 1

2

|un+ 1
2

i+ 1
2

h, we obtain the inequality:

| j3| ≤ τλc

2d
||un||2||un+ 1

2 || ≤ ε1τλc

4d
||un||2 + 1

16ε2

||un||2||un+ 1
2

x̄ ]|2.

Using the formula of summation by parts to the last term on the left-hand side of (29), we obtain

| j4| ≤ τ||un+ 1
2

x || ||g|| ≤ ε1τ

2
||un+ 1

2
x ||2 + τ

2ε1

||g||2.

The term on the right-hand side of the equation (29) is estimated as follows:

| j5| ≤ τ
2
||un+ 1

2
x || || f n|| ≤ ε1τ

16
||un+ 1

2
x ||2 + τ

8ε1

|| f n||2.
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Substituting these inequalities into (29) and assuming that the inequalities (τh − 2ε1) /2h > 0, 4
h2 − 9ε1τ

16
−

1
16ε1
||un||2 > 0 hold, we obtain the inequality

||un+ 1
2

x ||2 ≤ c1||un||2 + τ
2ε1

||g||2 + τ
8ε1

|| f n||2. (30)

Similarly, multiply the equation (28) by τun+1
i h and sum over the inner nodes of the grid:

||un+1||2 + τ2||un
t ||2 +

4

h2
||un+1

x̄ ]|2 + τ
2

M−1∑
i=1

(
un+ 1

2

i+ 1
2

un+ 1
2

x, i+ 1
2

+ un+ 1
2

i− 1
2

un+ 1
2

x̄, i− 1
2

)
un

i h+

+
τ

2

M−1∑
i=1

(
un+ 1

2

i+ 1
2

un+ 1
2

x, i+ 1
2

+ un+ 1
2

i− 1
2

un+ 1
2

x̄, i− 1
2

)
un

t,ih +
τλc

2d
|

M−1∑
i=1

un+ 1
2

i |un+ 1
2

i |un+1
i h+

+τ

M−1∑
i=1

un+1
i gn+ 1

2

x, i− 1
2

h = 2||un||2 + τ
M−1∑
i=1

un
i f n+ 1

2

i h. (31)

Estimating the scalar products similarly to the equation (29), we obtain a similar estimate

||un+1||2 ≤ c2||un||2 + c3τ||g||2 + c3τ|| f n+ 1
2 ||2. (32)

Adding the inequalities (30) and (32), we obtain

||un+1||2 ≤ c4||un||2 + c5τ||g||2 + c6τ
(
|| f n||2 + || f n+ 1

2 ||2
)
.

Using the inequality obtained, we can show that the chain of inequalities holds:

||un+1|| ≤ ||un|| ≤ ... ≤ ||u0||.

CONCLUSION

Thus, the paper considers the problem of fluid motion in a gas-lift well. A two-layer Lax-Vendroff difference scheme
is constructed for the numerical solution of the problem. A priori estimates for the difference problem were obtained
by the method of energy inequalities.
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