An iterative method for solving nonlinear Navier-Stokes equations in complex domains taking into account boundary conditions with uniform accuracy

Nurlan M. Temirbekov, and Zhadra R. Zhaksylykova

Citation: AIP Conference Proceedings 1997, 020036 (2018); doi: 10.1063/1.5049030
View online: https://doi.org/10.1063/1.5049030
View Table of Contents: http://aip.scitation.org/toc/apc/1997/1
Published by the American Institute of Physics

Articles you may be interested in
A study on Heron triangles and difference equations

Delay epidemic model with and without vaccine
An Iterative Method for Solving Nonlinear Navier-Stokes Equations in Complex Domains Taking into Account Boundary Conditions with Uniform Accuracy

Nurlan M. Temirbekov1,a) and Zhadra R. Zhaksylykova2,b)

1Kazakhstan Engineering Technological University, Almaty, Kazakhstan
2Abay Kazakh National Pedagogical University, Almaty, Kazakhstan

a)temirbekov@rambler.ru
b)zhaksylykova0507@mail.ru

Abstract. In this paper, the Navier-Stokes equations describing the motion of viscous incompressible fluid in a bounded domain is considered. Method of fictitious domains is applied for approximate solution of the problem taking into account boundary conditions with uniform accuracy.

FORMULATION OF THE PROBLEM

In a bounded domain \(\Omega \subset \mathbb{R}^2 \), we consider the initial-boundary value problem for the non-stationary flow of a viscous incompressible fluid. The problem reduces to solving a system of nonlinear Navier-Stokes equations [1]

\[\frac{\partial v}{\partial t} + (v \cdot \nabla) v = \mu \Delta v - \nabla p + f, \]
\[\text{div } v = 0, \]
\[v\bigg|_{t=0} = v_0(x), \quad v\bigg|_S = 0. \]

For simplicity, we assume \(v_0(x) = 0 \). The auxiliary problem corresponding to the method of fictitious domains reduces to solving a system of differential equations in \(D = D_1 \cup \Omega \) [2]

\[\frac{\partial v^\varepsilon}{\partial t} + (\nu^\varepsilon \cdot \nabla) v^\varepsilon = \text{div} (\mu^\varepsilon \nabla v^\varepsilon) - \nabla p^\varepsilon + f, \]
\[\text{div } v^\varepsilon = 0, \]
\[v^\varepsilon\bigg|_{t=0} = 0, \quad v^\varepsilon \cdot \tau \bigg|_{S_1} = 0, \quad p^\varepsilon \bigg|_{S_1} = 0, \]
\[\mu^\varepsilon = \begin{cases} \mu & \text{in } \Omega, \\ \frac{\mu}{\varepsilon} & \text{in } D_1, \end{cases} \]
\[[(\mu^\varepsilon \nabla v^\varepsilon - p^\varepsilon \cdot \delta) n] \bigg|_S = 0, \quad [v^\varepsilon] \bigg|_S = 0. \]

Here, \(n \) and \(\tau \) are the normal and tangent vector to the boundary \(S_1 \), \(f \) is continued in \(D_1 \) with the preservation of the norm in \(L_2(\Omega) \).

We introduce the set of infinitely differentiable vector-valued functions \(v(x) \) solenoidal in \(D \) with tangential components vanishing on \(S \):

\[M(D) = \{ v(x) \in C^\infty(D), \quad \text{div } v = 0, \quad v \cdot \tau = 0, \quad x \in S \}, \]
where τ is the tangent vector to the boundary S. The spaces obtained by the closure of $M(D)$ in the norms in $L_2(D)$ and $W_1^2(D)$ are denoted by $V(D)$ and $V_1(D)$, respectively, and their conjugate spaces by $V^*(D)$ and $V_1^*(D)$, and $V(D)$ and $V^*(D)$ are identified.

Definition 1 A generalized solution of problem (4)-(7) is a function $v^\varepsilon \in L_2(0, T; V_1(D)) \cap L_\infty(0, T; L_2(D))$ satisfying the integral identity

\[- \int_0^T (v^\varepsilon, \Phi) dt - \int_0^T (\Phi \cdot \nabla) dt + \int_0^T \int_{S_1} (v^\varepsilon \cdot \Phi) v^\varepsilon \cdot n ds dt + \frac{\mu}{\varepsilon} \int_0^T \int_{S_1} k(x) (v \cdot \Phi) ds dt + \int_0^T (\mu \varepsilon \nabla v^\varepsilon \cdot \nabla \Phi) dt = \int_0^T (f \cdot \Phi) dt \]

for any $\Phi \in C^1(0, T; V_1(D))$, $\Phi(T) = 0$, $(u, v)_D = \int_D u \cdot v \, dx$. It is assumed that $k(x)$ is a non-negative function.

Let $\omega_1, \omega_2, \ldots, \omega_N$ is an arbitrary basis in $V_1(D)$, and \tilde{v}_N^ε is an approximate solution of the problem (4)-(7):

$$
\tilde{v}_N^\varepsilon = \sum_{m=1}^N \alpha_{Nm}(t) \omega_m.
$$

(9)

$\alpha_{Nm}(t)$ is found from the system of ordinary differential equations

\[
\frac{d}{dt} \left(\tilde{v}_N^\varepsilon, \omega_j \right)_D + \left((v^\varepsilon \cdot \nabla) \tilde{v}_N^\varepsilon, \omega_j \right)_D + \frac{\mu}{\varepsilon} \int_{S_1} k(x) (\tilde{v}_N^\varepsilon \cdot \omega_j)_D ds + \left((\mu \varepsilon \nabla v^\varepsilon \cdot \nabla \omega_j)_D \right) = \left(f, \omega_j \right)_D, \quad j = 1, 2, \ldots, N,
\]

(10)

$$
\tilde{v}_N^\varepsilon(t)|_{t=0} = 0, \quad \alpha_{Nm}(t)|_{t=0} = 0, \quad m = 1, 2, \ldots, N.
$$

(11)

The solvability of (10)-(11) in a small time is known from the general theory of ordinary differential equations [3]. Global solvability follows from a priori estimates of the solution

$$
\max_{0 \leq t \leq T} \left\| \tilde{v}_N^\varepsilon(t) \right\|_{V_1(D)} \leq C < \infty
$$

(12)

which is obtained from system (10).

The following convergence theorem holds [1].

Theorem 1 Let $f(t) \in L_2(0, T; V_1(D))$, and ε satisfies the condition

$$
\frac{\mu}{2\varepsilon} - C_0 \int_0^T \left\| f(t) \right\|_{V_1^*(D)} \leq 0.
$$

(13)

Then there exists at least one generalized solution of problem (4)-(7), and the following estimate holds for the solution

\[
\max_{0 \leq t \leq T} \left\| \tilde{v}_N^\varepsilon(t) \right\|_{L_2(D)}^2 + \int_0^T \left\| \nabla \tilde{v}_N^\varepsilon(t) \right\|_{L_2(D)}^2 dt + \frac{1}{\varepsilon} \int_0^T \left\| \nabla \tilde{v}_N^\varepsilon(t) \right\|_{L_2(D)}^2 dt
\]

$$
+ \frac{1}{\varepsilon} \int_0^T \int_{S_1} k(x) \left| \tilde{v}_N^\varepsilon(t) \right|^2 ds dt \leq C \int_0^T \left\| f(t) \right\|_{V_1^*(D)} dt \leq C < \infty.
$$

(14)

In addition, the solution of problem (4)-(7) converges to the solution of problem (1)-(3).

Next, a difference scheme of the second order of approximation is constructed for the problem (4)-(7). For a numerical solution of this difference problem, a special iterative method is constructed that determines approximate solutions on the boundary with uniform accuracy for a limited number of arithmetic operations.

To develop a new numerical implementation algorithm, the idea of the fictitious unknowns method with a two-step iterative process [4] and a method for solving the Poisson difference equation in a square with the right-hand side different from zero only at nodes that are a distance of the order of the grid distance from a given piecewise smooth curve are used [5].
REFERENCES

