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Abstract. In this paper, the Navier-Stokes equations describing the motion of viscous incompressible fluid in a bounded domain
is considered. Method of fictitious domains is applied for approximate solution of the problem taking into account boundary
conditions with uniform accuracy.

FORMULATION OF THE PROBLEM

In a bounded domain Ω ⊂ R2, we consider the initial-boundary value problem for the non-stationary flow of a viscous
incompressible fluid. The problem reduces to solving a system of nonlinear Navier-Stokes equations [1]

∂v
∂t

+ (v · ∇) v = µ∆v − ∇p + f , (1)

div v = 0, (2)

v
∣∣∣∣
t=0

= v0 (x) , v
∣∣∣∣
S

= 0. (3)

For simplicity, we assume v0 (x) = 0. The auxiliary problem corresponding to the method of fictitious domains
reduces to solving a system of differential equations in D = D1 ∪Ω [2]

∂vε

∂t
+ (vε · ∇) vε = div (µε∇vε) − ∇pε + f , (4)

div vε = 0, (5)

vε
∣∣∣∣
t=0

= 0, vε · τ
∣∣∣∣
S 1

= 0, pε
∣∣∣∣
S 1

= 0, (6)

µε =

{
µ in Ω,
µ
ε

in D1,[
(µε∇vε − pε · δ) n

]∣∣∣∣
S

= 0,
[
vε

]∣∣∣∣
S

= 0. (7)

Here, n and τ are the normal and tangent vector to the boundary S 1, f is continued in D1 with the preservation of the
norm in L2 (Ω).

We introduce the set of infinitely differentiable vector-valued functions v (x) solenoidal in D with tangential
components vanishing on S :

M (D) = {v (x) ∈ C∞ (D) , div v = 0, v · τ = 0, x ∈ S } ,
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where τ is the tangent vector to the boundary S . The spaces obtained by the closure of M (D) in the norms in L2 (D)
and W̊1

2 (D) are denoted by V (D) and V1 (D), respectively, and their conjugate spaces by V∗ (D) and V∗1 (D), and V (D)
and V∗ (D) are identified.

Definition 1 A generalized solution of problem (4)-(7) is a function vε ∈ L2 (0,T ; V1 (D)) ∩ L∞ (0,T ; L2 (D))
satisfying the integral identity

−

∫ T

0
(vε,Φt)D dt −

∫ T

0
((vε · ∇) Φ, vε)D dt +

∫ T

0

∫
S 1

(vε · Φ) vε · n ds dt

+
µ

ε

∫ T

0

∫
S 1

k (x) (v · Φ) ds dt +

∫ T

0
(µε∇vε · ∇Φ)D dt =

∫ T

0
( f · Φ)D dt (8)

for any Φ ∈ C1 (0,T ; V1 (D)), Φ (T ) = 0, (u, v)D =
∫

D u · v dx. It is assumed that k (x) is a non-negative function.

Let ω1, ω2, ..., ωN is a arbitrary basis in V1 (D), and vεN is an approximate solution of the problem (4)-(7):

vεN =

N∑
m=1

αNm (t)ωm, (9)

αNm (t) is found from the system of ordinary differential equations

d
dt

(
vεN , ω j

)
D

+
((

vεN · ∇
)

vεN , ω j

)
D

+
µ

ε

∫
S 1

k (x) ·
(
vεN , ω j

)
D

ds

+
(
µε∇vεN , ω j

)
D

=
(

f , ω j

)
D
, j = 1, 2, · · · ,N, (10)

vεN (t)
∣∣∣∣
t=0

= 0, αNm (t)
∣∣∣∣
t=0

= 0, m = 1, 2, · · · ,N. (11)

The solvability of (10)-(11) in a small time is known from the general theory of ordinary differential equations
[3]. Global solvability follows from a priori estimates of the solution

max
0≤t≤T

∥∥∥vεN (t)
∥∥∥

V(D) ≤ C < ∞ (12)

which is obtained from system (10).
The following convergence theorem holds [1].

Theorem 1 Let f (t) ∈ L2 (0,T ; V1 (D)), and ε satisfies the condition

µ

2ε
−C0

∫ T

0
‖ f (t)‖V∗1 (D) dt ≥ 0. (13)

Then there exists at least one generalized solution of problem (4)-(7), and the following estimate holds for the solution

max
0≤t≤T

∥∥∥vεN (t)
∥∥∥2

L2(D) +

∫ T

0

∥∥∥∇vεN (t)
∥∥∥2

Ω
dt +

1
ε

∫ T

0

∥∥∥∇vεN (t)
∥∥∥2

D1
dt

+
1
ε

∫ T

0

∫
S 1

k (x)
∣∣∣vεN (t)

∣∣∣2 ds dt ≤ C
∫ T

0
‖ f (t)‖2V∗1 (D) dt ≤ C < ∞. (14)

In addition, the solution of problem (4)-(7) converges to the solution of problem (1)-(3).

Next, a difference scheme of the second order of approximation is constructed for the problem (4)-(7). For a
numerical solution of this difference problem, a special iterative method is constructed that determines approximate
solutions on the boundary with uniform accuracy for a limited number of arithmetic operations.

To develop a new numerical implementation algorithm, the idea of the fictitious unknowns method with a two-
step iterative process [4] and a method for solving the Poisson difference equation in a square with the right-hand side
different from zero only at nodes that are a distance of the order of the grid distance from a given piecewise smooth
curve are used [5].

020036-2



REFERENCES

[1] M. Temirbekov, Priblizhennye Metody Reshenija Uravnenij Vjazkoj Zhidkosti v Oblastjah so Slozhnoj Geome-
Triej (Almaty, 2000) p. 143.

[2] S. Smagulov, N. T. Danaev, and N. M. Temirbekov, Doklady Akademii Nauk Rossii 374, 333-335 (2000).
[3] A. N. Tihonov, A. B. Vasileva, and A. G. Sveshnikov, Differencialnye Uravnenija (Moscow, 2005) p. 256.
[4] I. E. Kaporin and E. S. Nikolaev, Differenc. Uravnenija 16, 1211-1225 (1980).
[5] E. A. Volkov, Doklady Akademii Nauk SSSR 283, 274-277 (1985).

020036-3


