An iterative method for solving nonlinear Navier-Stokes equations in complex domains taking into account boundary conditions with uniform accuracy
Nurlan M. Temirbekov, and Zhadra R. Zhaksylykova

Citation: AIP Conference Proceedings 1997, 020036 (2018); doi: 10.1063/1.5049030
View online: https://doi.org/10.1063/1.5049030
View Table of Contents: http://aip.scitation.org/toc/apc/1997/1
Published by the American Institute of Physics

Articles you may be interested in

A study on Heron triangles and difference equations
AIP Conference Proceedings 1997, 020007 (2018); 10.1063/1.5049001
Delay epidemic model with and without vaccine
AIP Conference Proceedings 1997, 020025 (2018); 10.1063/1.5049019

An Iterative Method for Solving Nonlinear Navier-Stokes Equations in Complex Domains Taking into Account Boundary Conditions with Uniform Accuracy

Nurlan M. Temirbekov ${ }^{1, \mathrm{a})}$ and Zhadra R. Zhaksylykova ${ }^{2, \mathrm{~b})}$
${ }^{1}$ Kazakhstan Engineering Technological University, Almaty, Kazakhstan
${ }^{2}$ Abay Kazakh National Pedagogical University, Almaty, Kazakhstan
${ }^{\text {a) }}$ temirbekov@rambler.ru
${ }^{\text {b) }}$ zhaksylykova0507@mail.ru

Abstract

In this paper, the Navier-Stokes equations describing the motion of viscous incompressible fluid in a bounded domain is considered. Method of fictitious domains is applied for approximate solution of the problem taking into account boundary conditions with uniform accuracy.

FORMULATION OF THE PROBLEM

In a bounded domain $\Omega \subset \mathbb{R}^{2}$, we consider the initial-boundary value problem for the non-stationary flow of a viscous incompressible fluid. The problem reduces to solving a system of nonlinear Navier-Stokes equations [1]

$$
\begin{gather*}
\frac{\partial v}{\partial t}+(v \cdot \nabla) v=\mu \Delta v-\nabla p+f \tag{1}\\
\operatorname{div} v=0 \tag{2}\\
\left.v\right|_{t=0}=v_{0}(x),\left.\quad v\right|_{S}=0 \tag{3}
\end{gather*}
$$

For simplicity, we assume $v_{0}(x)=0$. The auxiliary problem corresponding to the method of fictitious domains reduces to solving a system of differential equations in $D=D_{1} \cup \Omega$ [2]

$$
\begin{gather*}
\frac{\partial v^{\varepsilon}}{\partial t}+\left(v^{\varepsilon} \cdot \nabla\right) v^{\varepsilon}=\operatorname{div}\left(\mu^{\varepsilon} \nabla v^{\varepsilon}\right)-\nabla p^{\varepsilon}+f, \tag{4}\\
\operatorname{div} v^{\varepsilon}=0, \tag{5}\\
\left.v^{\varepsilon}\right|_{t=0}=0,\left.\quad v^{\varepsilon} \cdot \tau\right|_{S_{1}}=0,\left.\quad p^{\varepsilon}\right|_{S_{1}}=0, \tag{6}\\
\mu^{\varepsilon}=\left\{\begin{array}{c}
\mu \text { in } \Omega, \\
\frac{\mu}{\varepsilon} \text { in } D_{1},
\end{array}\right. \\
{\left.\left[\left(\mu^{\varepsilon} \nabla v^{\varepsilon}-p^{\varepsilon} \cdot \delta\right) n\right]\right|_{S}=0,\left.\quad\left[v^{\varepsilon}\right]\right|_{S}=0 .} \tag{7}
\end{gather*}
$$

Here, n and τ are the normal and tangent vector to the boundary S_{1}, f is continued in D_{1} with the preservation of the norm in $L_{2}(\Omega)$.

We introduce the set of infinitely differentiable vector-valued functions $v(x)$ solenoidal in D with tangential components vanishing on S :

$$
M(D)=\left\{v(x) \in C^{\infty}(D), \operatorname{div} v=0, v \cdot \tau=0, x \in S\right\}
$$

where τ is the tangent vector to the boundary S. The spaces obtained by the closure of $M(D)$ in the norms in $L_{2}(D)$ and $\stackrel{\circ}{W}_{2}^{1}(D)$ are denoted by $V(D)$ and $V_{1}(D)$, respectively, and their conjugate spaces by $V^{*}(D)$ and $V_{1}^{*}(D)$, and $V(D)$ and $V^{*}(D)$ are identified.

Definition 1 A generalized solution of problem (4)-(7) is a function $v^{\varepsilon} \in L_{2}\left(0, T ; V_{1}(D)\right) \cap L_{\infty}\left(0, T ; L_{2}(D)\right)$ satisfying the integral identity

$$
\begin{align*}
& -\int_{0}^{T}\left(v^{\varepsilon}, \Phi_{t}\right)_{D} d t-\int_{0}^{T}\left(\left(v^{\varepsilon} \cdot \nabla\right) \Phi, v^{\varepsilon}\right)_{D} d t+\int_{0}^{T} \int_{S_{1}}\left(v^{\varepsilon} \cdot \Phi\right) v^{\varepsilon} \cdot n d s d t \\
& +\frac{\mu}{\varepsilon} \int_{0}^{T} \int_{S_{1}} k(x)(v \cdot \Phi) d s d t+\int_{0}^{T}\left(\mu^{\varepsilon} \nabla v^{\varepsilon} \cdot \nabla \Phi\right)_{D} d t=\int_{0}^{T}(f \cdot \Phi)_{D} d t \tag{8}
\end{align*}
$$

for any $\Phi \in C^{1}\left(0, T ; V_{1}(D)\right), \Phi(T)=0,(u, v)_{D}=\int_{D} u \cdot v d x$. It is assumed that $k(x)$ is a non-negative function.
Let $\omega_{1}, \omega_{2}, \ldots, \omega_{N}$ is a arbitrary basis in $V_{1}(D)$, and v_{N}^{ε} is an approximate solution of the problem (4)-(7):

$$
\begin{equation*}
v_{N}^{\varepsilon}=\sum_{m=1}^{N} \alpha_{N m}(t) \omega_{m} \tag{9}
\end{equation*}
$$

$\alpha_{N m}(t)$ is found from the system of ordinary differential equations

$$
\begin{gather*}
\frac{d}{d t}\left(v_{N}^{\varepsilon}, \omega_{j}\right)_{D}+\left(\left(v_{N}^{\varepsilon} \cdot \nabla\right) v_{N}^{\varepsilon}, \omega_{j}\right)_{D}+\frac{\mu}{\varepsilon} \int_{S_{1}} k(x) \cdot\left(v_{N}^{\varepsilon}, \omega_{j}\right)_{D} d s \\
+\left(\mu^{\varepsilon} \nabla v_{N}^{\varepsilon}, \omega_{j}\right)_{D}=\left(f, \omega_{j}\right)_{D}, \quad j=1,2, \cdots, N \tag{10}\\
\left.v_{N}^{\varepsilon}(t)\right|_{t=0}=0,\left.\quad \alpha_{N m}(t)\right|_{t=0}=0, \quad m=1,2, \cdots, N \tag{11}
\end{gather*}
$$

The solvability of (10)-(11) in a small time is known from the general theory of ordinary differential equations [3]. Global solvability follows from a priori estimates of the solution

$$
\begin{equation*}
\max _{0 \leq t \leq T}\left\|v_{N}^{\varepsilon}(t)\right\|_{V(D)} \leq C<\infty \tag{12}
\end{equation*}
$$

which is obtained from system (10).
The following convergence theorem holds [1].
Theorem 1 Let $f(t) \in L_{2}\left(0, T ; V_{1}(D)\right)$, and ε satisfies the condition

$$
\begin{equation*}
\frac{\mu}{2 \varepsilon}-C_{0} \int_{0}^{T}\|f(t)\|_{V_{1}^{*}(D)} d t \geq 0 \tag{13}
\end{equation*}
$$

Then there exists at least one generalized solution of problem (4)-(7), and the following estimate holds for the solution

$$
\begin{align*}
& \max _{0 \leq t \leq T}\left\|v_{N}^{\varepsilon}(t)\right\|_{L_{2}(D)}^{2}+\int_{0}^{T}\left\|\nabla v_{N}^{\varepsilon}(t)\right\|_{\Omega}^{2} d t+\frac{1}{\varepsilon} \int_{0}^{T}\left\|\nabla v_{N}^{\varepsilon}(t)\right\|_{D_{1}}^{2} d t \\
&+\frac{1}{\varepsilon} \int_{0}^{T} \int_{S_{1}} k(x)\left|v_{N}^{\varepsilon}(t)\right|^{2} d s d t \leq C \int_{0}^{T}\|f(t)\|_{V_{1}^{*}(D)}^{2} d t \leq C<\infty . \tag{14}
\end{align*}
$$

In addition, the solution of problem (4)-(7) converges to the solution of problem (1)-(3).
Next, a difference scheme of the second order of approximation is constructed for the problem (4)-(7). For a numerical solution of this difference problem, a special iterative method is constructed that determines approximate solutions on the boundary with uniform accuracy for a limited number of arithmetic operations.

To develop a new numerical implementation algorithm, the idea of the fictitious unknowns method with a twostep iterative process [4] and a method for solving the Poisson difference equation in a square with the right-hand side different from zero only at nodes that are a distance of the order of the grid distance from a given piecewise smooth curve are used [5].

REFERENCES

[1] M. Temirbekov, Priblizhennye Metody Reshenija Uravnenij Vjazkoj Zhidkosti v Oblastjah so Slozhnoj GeomeTriej (Almaty, 2000) p. 143.
[2] S. Smagulov, N. T. Danaev, and N. M. Temirbekov, Doklady Akademii Nauk Rossii 374, 333-335 (2000).
[3] A. N. Tihonov, A. B. Vasileva, and A. G. Sveshnikov, Differencialnye Uravnenija (Moscow, 2005) p. 256.
[4] I. E. Kaporin and E. S. Nikolaev, Differenc. Uravnenija 16, 1211-1225 (1980).
[5] E. A. Volkov, Doklady Akademii Nauk SSSR 283, 274-277 (1985).

