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Abstract. In this paper, the Navier-Stokes equations describing the motion of viscous incompressible fluid in a bounded domain
is considered. Method of fictitious domains is applied for approximate solution of the problem taking into account boundary
conditions with uniform accuracy.

FORMULATION OF THE PROBLEM

In a bounded domain Q c R?, we consider the initial-boundary value problem for the non-stationary flow of a viscous
incompressible fluid. The problem reduces to solving a system of nonlinear Navier-Stokes equations [1]
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For simplicity, we assume vy (x) = 0. The auxiliary problem corresponding to the method of fictitious domains
reduces to solving a system of differential equations in D = Dy U Q [2]
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Here, n and 7 are the normal and tangent vector to the boundary S, f is continued in D; with the preservation of the
norm in L, ().

We introduce the set of infinitely differentiable vector-valued functions v (x) solenoidal in D with tangential
components vanishing on §':

MD)={v(x)eC* (D), divv=0, v.-7=0, xeS§},
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whers: 7 is the tangent vector to the boundary S. The spaces obtained by the closure of M (D) in the norms in L, (D)
and W% (D) are denoted by V (D) and V; (D), respectively, and their conjugate spaces by V* (D) and V7§ (D), and V (D)
and V* (D) are identified.

Definition 1 A generalized solution of problem (4)-(7) is a function v¢ € L, (0,T; Vi (D)) N Ly, (0,T; L, (D))
satisfying the integral identity

T
f(v O,)pdt — f((v -V) O, vF)Ddt+f - ®)V -ndsdt
0

f f k(x)(v- @)dsdt+f WV -VO), dt = f (f - ©)pdt ®)
N
forany ® € C' (0,T; Vi (D)), ®(T) =0, (u,v)p = fD u - vdx. It is assumed that k (x) is a non-negative function.

Let wy, wa, ..., wy is a arbitrary basis in V; (D), and v{, is an approximate solution of the problem (4)-(7):

aym (1) Wy, ©)]

M-

any () is found from the system of ordinary differential equations

d
7 (v]s\,,a)j)D + ((vi, . V) vf\,,a)j)D + 'Z ‘fsl k(x) - (va,a)j)D ds
+ (Vs w)), = (frw)),, J=1,2-N, (10)

B, =0 ann®] =0, m=1.2 N, (11)

The solvability of (10)-(11) in a small time is known from the general theory of ordinary differential equations
[3]. Global solvability follows from a priori estimates of the solution

max [y 0], < € < e (12)

which is obtained from system (10).
The following convergence theorem holds [1].

Theorem 1 Let f(t) € L, (0,T; Vi (D)), and € satisfies the condition

T
u
2 Co [ Ol > (13)

Then there exists at least one generalized solution of problem (4)-(7), and the following estimate holds for the solution
max s O + [ s @dit [ ool
o<t "N AL (D) 0 Nl e Jo N,

1 T ) 2 T
+;f f k() [vi 0| dsdt < cf ||f(t)||2vr(m di < C < oo. (14)
0 S 0

In addition, the solution of problem (4)-(7) converges to the solution of problem (1)-(3).

Next, a difference scheme of the second order of approximation is constructed for the problem (4)-(7). For a
numerical solution of this difference problem, a special iterative method is constructed that determines approximate
solutions on the boundary with uniform accuracy for a limited number of arithmetic operations.

To develop a new numerical implementation algorithm, the idea of the fictitious unknowns method with a two-
step iterative process [4] and a method for solving the Poisson difference equation in a square with the right-hand side
different from zero only at nodes that are a distance of the order of the grid distance from a given piecewise smooth
curve are used [5].
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